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SmartDetect: Safe Driving by Detecting
Steering-Wheel Handling With a Single
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Abstract—Holding the steering wheel with both hands
is essential for safe driving. This article proposes a novel
approach using only one off-the-shelf smartwatch to deter-
mine whether the driver is holding the steering wheel with
both hands. Two classification models, namely, the individual
and universal models, are proposed. An individual model
focuses on a particular driver, while the universal model
is applicable to all drivers. Both models extract vibration
features from the watch’s accelerometer signals using the
Hilbert–Huang transform and classify the signal pattern by
using support vector machines with a radial basis function
kernel. Data samples were collected from 35 drivers. The
universal model can achieve an accuracy of 98.51% for the
hand on which a smartwatch is worn and 90.29% for the hand on which the smartwatch is not worn; the individual model
achieves a higher accuracy of 99.21% for the hand on which a smartwatch is worn and 97.18% for the hand on which the
smartwatch is not worn.

Index Terms— Hilbert–Huang transform (HHT), safe driving, steering-wheel handling detection.

I. INTRODUCTION

THE National Highway Traffic Safety Administration
(NTHSA) of the United States advises that a driver should

operate the steering wheel with both hands while driving to
ensure safety. The optimal driving practices to maximize the
driver’s control of the vehicle and thus reduce the risk of
potential accidents involve balancing the steering wheel to
avoid sudden movements and minimizing steering wheel rever-
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sals [1]. With two hands on the wheel, drivers can exercise
far more control in maneuvering the vehicle in the case of a
sudden emergency, high speed, or a hard road. However, the
driver may not always be aware of the importance of holding
the steering wheel for safe driving. Several researches work
on safe driving aimed to detect whether the driver’s hands are
on/off the steering wheel [2], [3].

Several car manufacturing companies (e.g., Tesla, Volkswa-
gen, and BMW) manufacture high-end vehicles with pressure
sensors on the steering wheel to address this issue. Such
systems can notify the driver if they do not hold the steering
wheel with both hands. However, such technology may require
years to be applied to lower priced cars. Additionally, the
ratio of the number of high-end vehicles to the number of
low-end vehicles is 1.56–77.5 million; in other words, high-
end vehicles make up only 0.02% of the total number of
vehicles [4]. Therefore, an alternative technique to improve
the driver’s safety applicable for both high-end (new) or low-
end (old) cars is required.

Several studies on the recognition of driving behaviors based
on different sensing technologies such as cameras [5], [6],
[7], [8], [9], pressure distribution sensors [10], and pressure
sensors [11] have been developed. According to Statista
statistic, published in 2022, smartwatch unit sales worldwide
in 2018–2022 have increased drastically until 36%. The emer-
gence of the smartwatch and its popularity in the market can be
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attributed to its powerful function and ease of use. Forbes 2022
states that the sales of worldwide wearables will double
by 2022. The smartwatch contains many different sensors
and offers flexibility and extendibility to users, allowing them
to install many apps on it. The current applications include
healthcare monitoring, day tracking, and notification. Given
all these functionalities and the tremendous market growth,
it is clear that the use of smartwatches can lead to potential
improvement in other domains, such as drivers’ safety.

Bi et al. [12] utilized smartwatches and a smartphone in a
promising approach called SafeWatch that can warn a driver
if any off-steering-wheel action is recognized. Another tech-
nology called SafeDrive recognizes various hand movements
via an accelerometer and a gyroscope [13]. However, while
SafeWatch requires the use of one smartwatch on each hand,
SafeDrive requires just one smartwatch with the limitation that
the device will have no information regarding the behavior and
position of the hand on which a smartwatch is not worn.

This article proposes SmartDetect, a system that uses only
one off-the-shelf smartwatch to recognize whether both hands
are on the steering wheel. This article found that the vibration
patterns of one hand and both hands on the steering wheel as
detected by the accelerometer in the smartwatch are different.
This is probably because there are two main vibration signal
sources, namely, the car engine and hand movement. The
signals from each of these sources will weaken or strengthen
depending on the position of the hand on the steering wheel.
The goal of this article is to capture these signal differences
to determine whether both hands are on the steering wheel
using one smartwatch. This article proposes two modeling
approaches: universal and individual models.

Further, the signals can be classified into three classes: the
left and right hands are on the steering wheel (L1R1); the
left hand is on the steering wheel, while the right hand is
not on the steering wheel (L1R0); and the left hand is not on
the steering wheel, while the right hand is on it (L0R1). The
Hilbert–Huang transform (HHT) [14] is applied to produce the
Hilbert spectrum of the accelerometer signal for feature extrac-
tion. Next, support vector machines (SVMs) are employed to
build the classification models on the Hilbert spectrum for
distinguishing the three classes. The advantage of SVM is
that it offers a high classification accuracy since it enables the
combination with other pattern classification methods to reach
distinct objectives taken in the classification, besides a high
accuracy. In other words, it allows the incorporation of tools
that transform the biometric signal input data to the SVM and
solve the same [15]. In this article, an HHT transformation is
applied to the input signal.

Several experiments were conducted to evaluate the pro-
posed methods. The experimental result shows that the
individual model can provide 97% average accuracy for
L1R1 versus L1R0 and 99.48% average accuracy for L1R1
versus L0R1. Therefore, SmartDetect contributes to a novel
approach that can recognize steering-wheel handling detection
for both hands using only one smartwatch.

The remainder of this article is organized as follows.
Section II provides a background of the research on
steering-wheel handling detection. Section III describes the

proposed universal and individual models. Section IV presents
the experimental results and discussion. Finally, Section V
provides the conclusion and prospects of this article.

II. RELATED WORK AND CHALLENGES

Technological advances to enhance driver’s safety have
always been an active research topic [16], [17]. Several works
primarily focused on detecting the hand position [2], [3], [12],
[13], [18]. The latest approach presented by Bi et al. [12]
explored the possibility of relying on the raw signals of a
smartwatch. They utilized smartwatches, smartphones, and
cameras to capture information on driving behavior. Their
system detects whether a hand is holding the steering wheel
based on several features from the motion data, such as the
posture of the driver’s forearm, vibration of the vehicle’s
body, and vehicle turning. An accuracy of up to 91% was
achieved for both precision and recall. The only limitation
of their approach is that it can detect the movement of only
that hand on which the smartwatch is worn. To recognize the
movements of both hands, the driver must wear smartwatches
on both hands. SafeWatch applied the vertical component
of the vibration signal and did not extract more critical
information from the signal. In this study, we applied the HHT
to obtain better features.

Furthermore, SafeWatch has more stages than SmartDetect.
First, SafeWatch detected the hand movement from the sensor
sampling output. Each rest and moving detection result has
several distinct processes to detect if the hand is on or off
the wheel. Whereas SmartDetect simplifies the process into
two main stages: feature extraction and classification. The
latest similar research [18] proposed deep learning to predict
the driver’s hands on/off. However, this article utilizes a less
flexible, embedded capacitive sensor than a smartwatch.

The challenges of SmartDetect for steering-wheel handling
detection are as follows.

1) It must be convenient, familiar, and feasible, and it
should not interfere with driving to improve driver
safety; for example, the driver should have to use one
smartwatch instead of two.

2) The proposed system should be applicable to various
drivers, cars, and environments.

3) It must provide good performance, especially for the
hand that is not wearing a smartwatch.

III. SYSTEM DESIGN

A. System Overview
SmartDetect is a wearable sensing system for improving

driver safety. It uses one smartwatch to detect the positions of
both hands to determine whether they are on/off the steering
wheel. For this purpose, SmartDetect extracts the vibration
signal using the three-axes accelerometer of a smartwatch,
which is worn on one hand of the driver (the left hand in
this article) and which is paired with a smartphone placed in
the vehicle. The application scenario is that the smartwatch
acts as a sensor for capturing the vibration signals from the
car and driver, and then, it sends the captured signals using
Bluetooth connection to other devices as a server for analysis.
SmartDetect has four parts, as shown in Fig. 1. The first part is
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Fig. 1. SmartDetect architecture.

TABLE I
SIGNAL PROCESSING METHOD COMPARISON

preprocessing, which involves clock synchronization, median
filtering, and signal partitioning. The second part is feature
extraction that applies empirical mode decomposition (EMD)
and Hilbert spectral analysis (HSA) [14] to extract the HHT
features. In the third part, the classification model is learned
by SVMs, and testing is conducted in the last part.

B. Signals and Data Samples
The signal was collected from the X -, Y -, and Z -axes

accelerometer sensors of the smartwatch in two environments:
stationary cars and moving cars. As suggested by Gu et al. [3]
and defined by the American Society of Safety Engineers,
unsafe driving actions will last for at least 2.5 s. Since
the sampling rate of the accelerometer on a smartwatch
is 50 Hz, original signals are then obtained for every 125 data
points. Therefore, for each action, the sample for each of the
three-axis accelerometers comprises 125 data points.

Based on the signal analysis performed, it concluded
that driver behavior signals are nonlinear and nonstationary.
According to [19], HHT is the most suitable signal trans-
formation method, as shown in Table I. The signals analysis
is explained in Figs. 2 and 3. Another research [20] showed
that the HHT method is more adaptive than wavelet trans-
form (WT) analysis in analyzing nonstationary magnetotelluric
signals and will have a wide application on signal processing.

Fig. 2(a) shows examples of the raw signals of L1R1 and
L1R0. According to the mean value of each partitioned sample
of the raw signal within a short period, it is evident that the

Fig. 2. L1R1 (both hands are on the steering wheel) and L1R0 (the
left hand is on the steering wheel, while the right hand is not on the
steering wheel): (a) raw signals on three axes and (b) Hilbert spectrum
of the x-axis.

Fig. 3. Feature visualization for sample L1R1 versus L1R0 in 3-D space.

mean value tends to vary with time. This type of signal can
be considered a nonstationary signal, and the HHT can be
suitable for processing this type of signal. Fig. 2(b) shows
the Hilbert spectrum. Fig. 2 demonstrates that although the
scenarios with one hand on the wheel and both hands on the
wheel have different patterns in both raw signals and Hilbert
spectra, it is much harder to distinguish the patterns of the
raw signals, whereas the patterns in the Hilbert spectra are
drastically different.

Fig. 3 shows the distribution of the three-axis accelerometer
signal from the L1R1 (safe action) and L1R0 (unsafe action)
classes in the first three components obtained by principal
component analysis (PCA). It can be seen that the sample of
L1R1 and L1R0 may be not linearly separable, and nonlinear
classifiers can be employed.

C. Preprocessing
The preprocessing step is similar to that in [21]. First,

the clock of the smartwatch and smartphone is synchronized
for partitioning the raw signals. Second, the median filter is
applied to the raw signal for noise removal. A median filter
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Fig. 4. Data preprocessing result.

Fig. 5. Feature extraction process.

was applied since it is nonlinear and good to remove noise
and extreme values [22], [23].

Third, the raw signal is partitioned into segments as
described in Section III-B. Fig. 4 describes the output obtained
after partitioning; this output is the preprocessing result.

D. Feature Extraction
Feature extraction aims at extracting effective features for

distinguishing safe and unsafe actions. In this stage, the
HHT [12], [14], which is often applied to analyze nonstation-
ary and nonlinear data, is used. The feature-extraction process
is shown in Fig. 5. It involves two main steps: EMD and HSA
that also called HHT spectrum.

EMD decomposes the input signal into several intrin-
sic mode functions (IMFs) and a residue/trend, which has
well-behaved Hilbert transforms. EMD is based on the direct
extraction of the energy associated with various intrinsic
timescales, the most critical parameters of the system. The
essence of the method is to empirically identify the intrinsic
oscillatory modes by their characteristic timescales in the data
and then decompose the data accordingly. The decomposition
is executed with several steps.

1) Identify all the local extrema (maximum and minimum).
2) Connect all the local maximum and minimum by a cubic

spline line as the upper and lower envelopes. The time
lapse between the maximum and minimum extrema is
defined as a characteristic timescale.

3) Obtain the mean value from the envelope of minimum
and maximum values, and then decrease the value of
signal by the mean value of the envelope.

4) Repeat steps 1–3. If the data were devoid of extrema
but contained only inflection points, then it can be dif-
ferentiated once or more to reveal the extrema, in which
the data are decomposed into several IMF components.
The final result can be obtained by integration(s) of the
components, called IMFs [14].

Then, the Hilbert transform is applied to the IMFs to obtain
instantaneous amplitude and frequency data for the IMFs. Such
an energy–frequency–time representation of data is designated
as the Hilbert spectrum. The Hilbert transform y(t) of a
real-valued signal x(t) is defined as [14]

y(t) =
1
π

P
∫

∞

−∞

x(t ′)

t − t ′
dt ′ (1)

where P denotes the Cauchy principal value. It is a method
to assign values of certain improper integrals, where a sin-
gularity on an integral interval is avoided by limiting the
integral interval to the singularity. The Hilbert transform is a
companion function for x(t). With y(t), x(t) can be extended
to a complex-valued signal z(t) as

z(t) = x(t) + iy(t) = a(t)eiθ(t) (2)

where a(t) and θ(t) are the instantaneous amplitude and phase
of x(t), respectively, and they are defined as follows:

a(t) = (x2(t) + y2(t))
1/2

, θ(t) = arctan
(

y(t)
x(t)

)
. (3)

The instantaneous frequency f (t) can be obtained by

f (t) =
ρ × ω(t)

2π
(4)

where ρ is the sampling rate, and ω(t) = ((∂θ(t))/∂t) is the
instantaneous angular frequency of x(t).

The Hilbert spectrum of three axes (X , Y , and Z) is
used as the feature. Each axis has 25 HHT spectra covering
0–25-Hz frequency for each axis. Thus, 75 HHT features can
be obtained by averaging the three Hilbert spectra over time.

E. Training and Testing Phases
As mentioned previously, two different modeling

approaches, namely, the universal and individual models, were
implemented on SVMs. An SVM is a supervised learning
algorithm whose objective is to find a hyperplane in the
feature space with a large separation margin for classifying
the data points.

SVM method classification was utilized according to [24].
This article results suggest that the SVM classifier may
perform better than logistic regression (LR), K-nearest neigh-
bor (KNN), and Naïve Bayes (NB). Compared to LR, SVMs
can handle nonlinear solutions, whereas LR can only handle
linear solutions. Moreover, linear SVMs handle outliers better,
as they derives maximum margin solution. Moreover, SVMs
take care of outliers better than KNN and outperform KNN
when there are large features and lesser training data. It sup-
ports after [25] conclusion that SVMs have fast response and
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Fig. 6. Accuracy with respect to various combinations of C and
γ values.

less error, and it is suitable for classifying electromygraphy
(EMG) signals compared to NB. The SVM is learned by
solving the following optimization problem [26]:

min
w,b,ε

1
2

wTw + C
l∑

i=1

εi (5)

s.t. yi (wTφ(xi ) + b) ≥ 0 − εi , εi ≥ 0 (6)

where C ≥ 0 is the penalty parameter to control the tradeoff
between the margin and the error, and (xi , yi ) is a training
instance-label pair with xi , which is the i th training vector,
and yi ∈ {−1, 1}, which is the associated class label. The
sample vector can be nonlinearly mapped by the function φ

into a higher dimensional feature space.
As explained in Section III-B, the data distributions of

safe and unsafe actions are not linearly separable. By the
kernel trick, the radial basis function (RBF) kernel [26]
can be applied. The RBF kernel K (x, y) is defined as
follows:

K (x, y) = exp (−γ ∥x − y∥
2), γ > 0 (7)

where γ is the hyperparameter for the RBF kernel.
In this article, the best values for the hyperparameters

γ and C were selected by fivefold cross-validation; for each
cross-validation, 80% of the training sample formed the
training set, and the other 20% of the training sample formed
the validation set. The parameter sets for C and γ included
wide ranges of values, usually covering the appropriate ones
for C and γ .

The accuracy of each combination of fivefold cross-
validation is described in the graph in Figs. 6–8. Fig. 6
exhibits the stability of the accuracy toward the combina-
tions of C and γ values in a 3-D chart. The boxplot chart
in Fig. 7 shows that the accuracy value is stable for each
combination of C and γ values, with a minimum accu-
racy of 86.49 and a maximum of 100%. For the best C
and gamma values, the minimum accuracy is 90.40%, and
the maximum is 100%. Fig. 8 shows the accuracy stability
reaching 100%, where participants achieved 100% accuracy
at various values of C and γ , not only at particular values
of C and γ .

Fig. 7. Accuracy of participants with respect to various combinations of
C and γ values.

Fig. 8. Participants’ accuracy reached 100% with respect to various
combinations of C and γ values.

TABLE II
PARAMETER SET AND THE BEST PARAMETER VALUE

According to the accuracy result with respect to C and γ

values, the γ value 2−2 indicates the best classification result
up to 100%, and the accuracy is constantly high when the C
values are 101, 102, and 103. The best parameter values for
C and γ are listed in Table II. Moreover, the results shown
in Figs. 6–8 also indicate the robustness of the proposed
method.

The universal model was trained on the dataset of all
drivers to obtain a single model, whereas the individual model
was trained on each driver’s data, and each driver had his
own model. A preliminary experiment shows that 70% of
the collected sample is sufficient for training the model for
this application. Accordingly, the training set is 70% of the
collected sample selected by stratified random sampling. The
other 30% of the collected samples formed the testing set.
The average accuracy of the model on the testing data
by 25 times of random sampling determined the model’s
accuracy.
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TABLE III
DATA COLLECTION SET

IV. EVALUATION

A. Experimental Data
The data collection involved 35 participants, where all par-

ticipants comprised master and Ph.D. students of the Computer
Science Department of National Central University (NCU),
Taoyuan City, Taiwan; male and female; the ages of the
participants were between 22 and 42 years. This range is
the medium range of the law ages of driver in Taiwan [32].
For safety, most participants participated in the experiment in
a stationary car environment. Three participants, who had a
driving license, participated in the experiment in a moving car
environment. The stationary car environment was realized in a
parked car with the engine running. This environment was used
for ascertaining data collection safety, while the moving-car
environment was realized in a reserved parking lot on the
campus with the university’s authorization. The participant
profile is summarized in Table III. In the data collection
process, each participant was asked to wear a smartwatch
on their left wrist and perform three actions: L1R1, L1R0,
and L0R1. Each participant conducted each action five times;
each action lasted for 2 min. Therefore, each dataset length
is 30 min. Table III also summarizes the collected data set that
was used as experimental data.

For the moving environment, the participants did not operate
the car because of safety concerns. Instead, the participant was
seated in the passenger seat and performed hand movements
on a fake steering wheel to mimic the driving activities as
another individual safely drove the vehicle. In this experiment,
we used Mitsubishi Savrin as a representative of old cars
(which is a commonly owned old car) and Toyota Corolla
Altis 2017 as the new car (a more expensive, newer car) to
account for different vibration harshness. For data collection,
a commercial standard smartwatch, Sony Smartwatch 3, paired
with Sony Xperia Z was used. The sampling rate of the watch
is 50 Hz.

The universal and individual models executed three clas-
sification scenarios to classify the experiment samples: L1R1
versus L0R1, L0R1 versus L1R0, and L1R1 versus L1R0. The
performance evaluation employed accuracy as a metric.

B. Experiments and Results
Six experiments were conducted to prove the claimed contri-

bution. The first experiment was aimed to ensure the feasibility
that the experiment was performed on samples collected from
the stationary environment instead of the samples from the
moving environment. The second experiment aimed to show
that the universal model on the HHT features was better than

Fig. 9. Comparison of the accuracy of the stationary and moving
environments.

that on the raw signal. The third experiment aimed to analyze
the reason why the universal model was ineffective in distin-
guishing the samples of L1R1 and L1R0 for some participants.
The fourth experiment aimed to compare the performances
of the universal and individual models. The fifth experiment
analyzed the number of features for the individual model. The
last experiment was performed to test the individual model on
old and new cars, which have different vibration levels.

To ensure the robustness of the result, random sampling
conducted 25 times using different subsets of training and
testing sets each time.

1) Comparison of Stationary and Moving Environments:
This experiment aimed to ensure that the data from the
moving environment could be substituted with the sample
from the stationary environment for performance evaluation.
This experiment compared the accuracy of the universal model
applied to the raw signal from the moving and stationary envi-
ronments to see if the environment has a significant effect of
the accuracy. Data from three participants in the stationary and
moving environments were used for this experiment. Fig. 9
shows the comparison result of the accuracies. The complete
result of five times random sampling is shown in Table IV.

The null hypothesis of this experiment is that the sample
data from the stationary or moving environment present a
similar result. A two-tailed t-test with a confidence level
of 95% was applied to prove the hypothesis. The result
indicates that the t-score value is not in the region of rejection
of the null hypothesis, which means the samples of stationary
and moving car environments are similar or equal.
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TABLE IV
COMPARISON OF THE ACCURACY OF THE STATIONARY

AND MOVING ENVIRONMENTS

Fig. 10. Analysis of the raw signal pattern, where orange denotes the
moving environment, and blue denotes the stationary environment.

More evidences exhibit in Fig. 10. Fig. 10 shows the
comparison of the distributions of the raw signals of both
environments for each class: L1R1, L0R1, and L1R0. The blue
dot denotes the stationary environment, while orange denotes
the moving environment. The dimension of the raw signal
was reduced by PCA. Fig. 10 indicates that the raw signals
on the stationary and moving environments exhibit similar
distributions. Fig. 10 also shows that the distribution of the
signal on the moving environment is more stable, while that on
the stationary environment is more spreading and difficult. The
results indicate that if the approach is effective for stationary
sample data, then it is suitable for moving car data; for the
rest of the experiments, data collected from the stationary car
experiment can be used.

However, several previous works resume that speed could
affect the vibration of the vehicle or other moving machines.
On a hand tractor, velocity strongly affects transmitted vibra-
tion to the driver’s hands [27]. A study of the rail conveyor’s
vibration and noise deduces that the conveyor’s running
speed impacts the vibration and noise [28]. While Zuska and
Więckowski [29] discovered that the vibrations of the steering
wheel affected when the speed reached 100 km/h. The findings
of the references denote that the effect of the car’s speed on
hand detection on the steering wheel based on the vibration
signal of the smartwatch needs to be explored in future work
since this experiment utilizes limited data (three participants).

Fig. 11. Comparison of the average accuracies of three different
features.

2) Performance Evaluation of Different Features Using the
Universal Model: In this experiment, data of 35 participants
from the stationary environment using the old car were used.
This experiment aimed to prove that HHT feature extraction
results perform better than the raw signals. The HHT experi-
ment design was as follows.

1) The compared features were the raw signal, ten HHT
features, and 25 HHT features.

2) The universal model and SVMs-RBF classifier were
employed. The reasons for using the RBF kernel instead
of the linear kernel are explained in Section III-E.

3) Random sampling for training and testing data was
performed 25 times to ensure robustness.

These three features were compared. The comparison is
shown in Fig. 11. In Fig. 11, the universal model using the
HHT extraction feature exhibited a drastic improvement in
accuracy. This finding implies that HHT with 25 features gives
the best result for all features. Nevertheless, while excellent
accuracy is achieved for L1R1–L0R1 and L0R1–L1R0, this
is not the case for L1R1–L1R0, representing the hand with-
out a smartwatch (i.e., the right hand in this case). Hence,
L1R1–L1R0 accuracy should be improved.

3) Data Distribution Analysis of the User: Since experiment 2
did not yield good results for the hand without a smart-
watch (L1R0), the study should analyze the data distribution
of the user. The purpose of this experiment was to compare
the characteristics of experimental samples to check whether
L1R1 and L1R0 have different patterns. PCA was performed
for data distribution analysis. The experimental result provides
insight into why the classification result from L1R1 against
L1R0 cannot be improved, as shown in Fig. 12.

The data used in this analysis comprised the data of
35 participants of the stationary environment experiment using
the old car. First, the sample data were split for each driver.
Then, PCA reduction was performed for all the drivers,
and the mean of the PCA reduction result was calculated.
Finally, two results were obtained for each driver—one was
the mean value of L1R1, and the other was the mean
value of L1R0.

Fig. 12 shows that some data points of L1R1 overlap with
the L1R0 data from the other drivers; the other drivers have
reverse data between L1R1 and L1R0. Hence, the classifier
faces difficulties in distinguishing L1R1 and L1R0 for some
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Fig. 12. Distribution analysis of L1R1 and L1R0 for each participant.

Fig. 13. ROCs for the individual and universal models.

data points. The results indicate that L1R1 and L1R0 mean
data for every driver are at different levels. Because of the
existence of overlap and reverse data between L1R1 and L1R0
of different drivers, the individual model is a proper way to
distinguish L1R1 and L1R0.

4) Performance Evaluation of the Individual Model: This
experiment aims to evaluate the performance of the pro-
posed individual models and whether they can provide better
accuracy on L1R1–L1R0 than the universal model. This exper-
iment was designed with the individual model as explained
in Section III. System design uses 25 HHT features and the
SVMs-RBF classifier, and the experiment was run 25 times
with random sampling. The data used in this experiment
comprised the data of 35 participants in the stationary envi-
ronment experiment using the old car. The performance was
analyzed using the receiver operating characteristic (ROC)
curve, as shown in Fig. 13. It was applied because the
observations were balanced between each class, both L1R1
and L1R0. The ROC curve summarizes the tradeoff between
the true-positive and false-positive rates for a predictive model
using different probability thresholds. It is ideal if the area
under the curve (AUC) approaches 1 (meaning the curve is
far away from the cross line, or the yellow dotted line), and it
performs poorly if the AUC is close to 0.5 (meaning the curve
approaches the cross line).

Fig. 14. Accuracy comparison of the individual and universal models of
the hand-not-worn smartwatch.

TABLE V
CONFUSION MATRIX

Fig. 13 shows that the individual model provides better
results than the universal model on the hand which not worn
smartwatch. An ROC curve closer to (0,1) is desirable because
how good a model is at predicting the positive class when the
actual outcome is positive that is remarkably higher than how
often a positive class is predicted when the actual outcome is
negative. The AUC of the individual model is 0.993, which is
better than the AUC of the universal model (0.962). This result
indicates that a classifier’s probability of ranking a randomly
chosen positive instance is higher for the individual model
than for the universal.

Fig. 14 shows the accuracy for each user, and it shows
that there is no significant difference among the participants.
The average accuracy of the individual model is 97.18%,
with a standard deviation of 2.89, while the average accuracy
of the universal model is 90.29% with a standard devia-
tion of 5.05. A confusion matrix consisting the rate of true
positive, false positive, false negative, and true negative is
provided in Table V, where the positive is L1R1, and the
negative is L1R0. The performance measures indicate that
the individual model is more accurate than the universal
model.

The comparison of individual and universal models’ accu-
racy for the hand-worn smartwatch is observed by L1R1–L0R1
classification. The result is shown in Fig. 15. The result is
quite similar because the difference between the hand-worn
smartwatch when it is on or off the wheel is significant.
Therefore, the result of the universal model is good, and the
individual model improves a few results. However, the individ-
ual model solved the challenge of distinguishing the position
of the hand-not-worn smartwatch, according to the results
shown in Figs. 13 and 14.

In the experiments with the individual model, the minimum
count of data to be processed was four—two from L1R1
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Fig. 15. Accuracy comparison of the individual and universal models of
the hand-worn smartwatch.

Fig. 16. Accuracy of the individual model with respect to the signal
length.

and two from L1R0, and the minimum duration was 10 s.
However, the minimum data size and length result in poor
model performance. We obtained better performances with
longer data lengths. The accuracy was greater than 90% for
data samples of length 50 s (20 data), 92% for 60 s, 93.3%
for 80 s, 94.92% for 130 s, and approximately 97% for 600 s.
Fig. 16 shows the accuracy plotted as a function of time; the
confidence interval is 97.18 ± 1.89, with a confidence level
of 95% for 600–750 s of data collection time.

When applied the HHT on partitioned signals, a spec-
tral leakage possibly occurs, though the good result of this
experiment shows that spectral leakage is not severe for this
application. However, overcoming the spectral leakage will be
one of the future works. For example, a modified HHT [30]
can be adopted.

5) Dominant Feature Analysis: In this experiment, the dom-
inant feature and the number of features were analyzed for the
individual model. The results provide an insight into the effect
of the number of features on system accuracy. The dominant
features were analyzed by two strategies: 1) feature ranking—
the feature importance was determined from the absolute
value of the feature weight given by the linear SVM [31]
and 2) PCA.

The experimental results are summarized in Table VI.
As seen from Table VI, the system accuracy can be maintained
by retaining approximately two-third of the important features
or principal components.

TABLE VI
ANALYSIS OF DOMINANT FEATURES

Fig. 17. Individual model performances for new and old cars.

6) Comparison of Old-Car and New-Car Environments: This
experiment was designed to check whether the individual
model is effective for both old and new cars to allay the
suspicion that different vibrations from different vehicles will
affect the accuracy. This experiment was conducted by using
an individual model with ten participants who drove both old
and new cars in a stationary environment. In all, 75 HHT
features were used, and the classifier was SVMs-RBF. The
process is the same as that for the individual model for each
driver on an old or new car. For the ten participants, the old-car
models and new-car models were labeled MO1–MO10 and
MN1–MN10, respectively.

The experimental models achieved an accuracy average
of 97.05 with a standard deviation of 3.49 for the new
car and an average of 96.03 with a standard deviation
of 4.38 for the old car. The result is shown in Fig. 17.
This result provides convincing evidence that the pattern
is similar for most participants; the model performance of
only participant number 9 was slightly different. This result
is reasonable because even for the same type of car, the
accuracy may differ slightly with the participants because the
dataset was obtained randomly from the behavior. In addition,
the vibration signal patterns were similar even for differ-
ent amplitudes. This experiment proved that the suspicion
that vibration will affect the performance is unwarranted
and that the individual model is robust and applicable to
diverse situations as it can handle vibrations of different
amplitudes.

V. CONCLUSION

Universal and individual models with HHT feature extrac-
tion and SVMs-RBF are presented as a novel approach that
employs only one smartwatch to detect steering-wheel han-
dling for both hands. The main challenge is to detect the
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behavior of the hand on which the smartwatch is not worn. The
individual model can solve this problem well, and it achieves
an AUC of 0.993 for the ROC curve and an average accuracy
of 97.36%. This approach requires new data collection to train
a new model for each new user and around 60–600 s of data
for achieving an accuracy between 91% and 97.18%. The
universal model is more feasible for practical use because
it does not need to learn the signal patterns of each new
user, but it provides a limited accuracy of 90.29% with an
AUC of 0.962.

The experiments and result analysis prove that although sta-
tionary data were used to avoid dangerous situations involving
data collection in a moving-car environment, the proposed
approach is effective for moving-car environments. Neverthe-
less, the data for this experiment is limited. A deep study
of vibration signal in stationary and some speed degrees of
moving car will be valuable.

The proposed approach is generalizable for many drivers
as the research involved 35 participants and provided strong
model performance. The participants’ age range did not cover
the ages 18–21 and 43–65, as stated in the law ages of driver
in Taiwan [32]. It will be more meaningful to cover the ages
of the possible driver in the future work.

Further, the approach is suitable for high-end cars
(i.e., new cars) as well as average-level cars (old cars).
In future works, ways to overcome spectral leakage and a deep
analysis of the essential features will be valuable.
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