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Abstract—Efficient online liveness fault detection is crucial
to cloud systems. Most current online liveness fault detection
techniques, such as system layer heartbeating, use a single unre-
liable detector to detect cloud system liveness. A single unreliable
detector requires a certain amount of time to detect faults to
avoid misjudgment, regardless of the type of fault detected.
However, many faults can be detected by other detectors more
quickly. Therefore, this paper proposes an efficient online liveness
fault detection mechanism for cloud systems that integrates
existing detectors to quickly detect faults. We compared the
fault detection efficiency of the proposed mechanism with those
of counterpart mechanisms. According to the results, relative
to system layer heartbeating without any auxiliary detection
mechanism, our proposed mechanism had a 70.3% shorter fault
detection time.

Index Terms—Fault detection time, multilayer cloud system,
linear layer dependence, online fault detection, transient fault.

I. INTRODUCTION

Fault detection aims at finding major defects in a system,
and these defects may appear in the system’s components.
Fault detection is crucial to ensuring the high availability of
systems, and it has been used in a wide variety of critical
applications—such as in cloud computing [1], nuclear engi-
neering [2], and aerospace systems [3]. For cloud computing in
particular, online fault detection is crucial for ensuring the high
availability of cloud systems. Disruptions in the services of
cloud computing services could have negative consequences.
For example, in November 2020, Amazon Web Services went
offline for several hours, resulting in the unavailability of
several types of Internet services such as e-commerce and
news platforms [4]. Online fault detection for cloud computing
is usually used to detect the liveness of the target application
and to ensure high availability by reducing downtime; it has
been applied in VMWare vSphere [1].

Liveness detection is a common method of online fault
detection [5]. An existing fault detector can be classified as
reliable or unreliable, per the definition proposed in previous
studies [6], [7]. The output of a reliable detector is always
accurate; by contrast, an unreliable detector monitors a target
component long term, and the response time depends on
how long the whole system can tolerably sustain such an
operation. In practice, reliable detectors are usually used to

detect permanent faults, whereas unreliable detectors, such as
heartbeat detectors [9], are usually used to detect transient
faults—which are faults of limited duration, caused either by
temporary component malfunction or external interference [8].
Note that a transient fault must include a maximum duration
parameter; faults that last longer are interpreted as permanent
by the recovery algorithm.

In cloud computing, the most common present-day liveness
fault detection technique is system layer heartbeating [9]. This
technique considers the entire computing system to be a black
box. It detects only heartbeats that are regularly received from
the target; if no response is received from the target after a
user-defined waiting period, an alert is raised. However, fault
detection with only the system layer heartbeating technique is
inefficient because a single detector cannot distinguish faults in
the system—by virtue of the detector’s application of the same
method to all faults. However, certain faults can be quickly
detected by other detectors. For example, when the system
power supply is damaged, a power supply detector can quickly
detect the fault. By contrast, a detector employing system layer
heartbeating can detect faults only after an initial setup time.
In other words, the use of other efficient detectors in fault
detection can reduce the average fault detection time. We can
divide the systems into component groups and install detectors
that are most suited to the components in each group. We can
then develop an efficient detection strategy that integrates the
detection results of each group of detectors.

Several studies [10]–[12] have noted that, a cloud system
can provide infrastructure as a service (IaaS), platform as a
service (PaaS), or software as a service (SaaS) to end users
[38]. They also mentioned that a cloud system comprises
numerous components and can be abstractly represented as
members of nonoverlapping groups. The most common ap-
proach is to group these components into several layers. For
example, in the IT industry [32], [39], a cloud system is
usually segmented into nine layers (stacks), the functions of
which range from networking infrastructure to support for user
applications (Fig. 1a). Specifically, an IaaS system comprises
four of these nine layers (networking to virtualization), a PaaS
system comprises seven of these nine layers (networking to
runtime), and an SaaS system comprises all nine layers. Each
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layer can be further divided conceptually. Studies [33], [37]
have provided fine-grained analyses of a virtualized compute
host comprising server, virtualization, and operating system
(OS) layers (Fig. 1a); the server layer functions as the host
hardware and host OS layers (Fig. 1b). On the basis of this
idea, a finer-grained view of the server, virtualization, and OS
(guest OS) layers is illustrated in Fig. 1c. First, the server
layer is divided into the following layers: power component,
hardware (CPU), host OS, and network (network service at
host OS) layers. Second, the virtualization layer is named the
VM process layer. Third, the OS (guest OS) layer is divided
into the guest OS and VM network layers.

On the basis of the layering approach, we propose installing
a detector for each layer in a fine-grained architecture (Fig. 1c)
to accelerate fault detection, as illustrated in Fig. 2. That is,
a fast reliable detector can be used if all faults in a particular
layer, such as the power layer, are permanent; otherwise, an
unreliable detector should be used, such as the host OS layer.
As a result, a virtualized compute host in a cloud system can be
viewed as a multilayer system, and the liveness of each layer
can be detected by either a reliable or an unreliable detector,
as illustrated in Table. I. In such an approach, fault detection
becomes an online faulty layer identification problem. Notably,
we can generalize the approach to different multilayer cloud
systems, where we can install a detector on each layer of a
multilayer cloud system for rapid fault detection.

Fig. 1. Different abstractions of the architecture of a virtualized compute
host in a cloud system. (a) Three layers (in white) representing a virtualized
compute host in the nine layers from the IT industry; (b) corresponding four
layers of a virtualized compute host in [33], [37]; (c) finer-grained view of a
virtualized compute host which is able to provide rapid fault detection.

To provide an efficient method of identifying the faulty
layer, we propose grouping components into linearly depen-
dent layers. Such dependence between layers is a common
feature of multilayer systems, as noted by [11], [12], [29],
and we term it linear layer dependence. Trihinas et al. [11]
noted that cloud systems comprise multiple layers and are
associated with many service paradigms. They utilized this
characteristic of cloud systems to design and implement an
automated, layered cloud monitoring framework. Wu et al.
[12] also found that a task layer fault is a high layer fault
that encapsulates many low layer faults—such as compute

Fig. 2. Layers and their detectors in a virtualized compute host in a cloud
system.

TABLE I
LAYER DETECTOR INFORMATION OF FIG.1.

Layer Layer Objective Detector Response
No. detectors types time

6 ICMP for VM liveness of unreliable shortVM network
5 Watchdog in VM guest OS liveness unreliable short
4 Libvirt callback func. existence of VM reliable short
3 ICMP for host network liveness unreliable long ∗

2 Watchdog in host host OS liveness unreliable medium
1 IPMI for CPU health of CPU reliable short
0 IPMI for power health of power reliable short

∗ The network layer detector has a long response time because it must
consider transient faults such as network busy.

node and host OS crashes. In summary, online liveness fault
detection with linear layer dependence has the following major
properties:

• When a fault occurs in a multilayer system, the fault must
exist in one of the layers.

• A fault in a lower layer can impair the liveness of all
the components in the upper layers; by contrast, a higher
layer fault cannot affect the liveness of lower layered
components.

• A transient fault in a lower layer can temporarily disrupt
the liveness of all components in the upper layers.

• Transient fault detection relies on heartbeating and thus
requires a long detection time.

• If the duration of a transient fault exceeds the system’s
tolerance time, the fault should be interpreted as perma-
nent.

• A permanent fault uses a reliable detector that requires a
short response time.

With various layer detectors and linear layer dependence,
we can efficiently determine the faulty layer without needing
to conduct fault detection for all layers. However, unreliable
detectors still take a long time to detect faults. To solve
this problem, we propose dividing the detection process used
by the unreliable detector into two phases, as illustrated in
Fig. 3. The first phase determines whether the fault lies in the
identified layer, in which liveness can be detected quickly. The
second phase determines whether the fault is transient when
the layer is detected to be the faulty layer. This two-phase
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approach decreases the average fault detection time.

Fig. 3. Use of two-phase fault detection, where the response times are all
assumed values.

This study addresses an efficient online liveness fault de-
tection mechanism for multilayer cloud systems, specifically
for virtualized compute hosts on the cloud. The proposed
mechanism 1) divides a virtualized compute host in a cloud
system into linearly dependent layers, 2) integrates several
existing detectors for these layers, and 3) uses an optimal
tree-based algorithm to quickly detect and identify the faulty
layer; the optimal fault detection tree is built through dynamic
programming. The proposed mechanism comprises three ma-
jor steps: 1) confirming fault occurrence, 2) identifying the
faulty layer, and 3) confirming fault transience, if required.
The contributions of this study are as follows:

1) To determine the faulty layer, we propose an optimal
tree-based fault detection algorithm and demonstrate that
it maximizes efficiency.

2) We applied the proposed mechanism to a real cloud
system. The experimental results demonstrate that, the
proposed mechanism has a fault detection time 70.3%
shorter than that required for system layer heartbeating
[9] without an auxiliary detection mechanism.

The remainder of this paper is organized as follows: Section
II introduces the related techniques. Section III describes
the multilayer system and the proposed mechanism. Section
IV details the proposed fault detection algorithm. Section
V presents the experimental results from an application of
the proposed mechanism. Section V I discusses the feasibility
of applying the proposed mechanism to parallel detection.
The final section summarizes this work and suggests future
research directions.

II. RELATED WORK

In this section, we first introduce existing online liveness
fault detection methods for cloud systems before introducing
tree-based fault detection methods that can be used to identify
the layer in which a fault occurs. Finally, we present a
summary of the properties of the related methods proposed
in the literature.

Many current online liveness fault detection methods for
cloud computing detect liveness of the software services,

physical hosts, VMs or the whole system [1], [9], [17], [24]–
[27], [34], [35]. Because these methods are similar to system
layer heartbeating, wherein only a single method is used to
detect all faults, their detection time is considerably lengthened
by faults that require long detection times, such as transient
faults. In short, these methods perform inefficiently when
detecting certain fault types.

By exploiting linear layer dependence, tree-based methods
can identify the faulty layer. Upon reviewing the literature (
[15], [16], [18], [23], [28]), we noted that tree-based methods
are common in electrical engineering. However, in electrical
engineering, diagnostic tests apply a diagnostic tree to diag-
nose a fault after a system has failed [28], which contrasts
with the real-time detection desired for our proposed method.
We considered two tree-based methods [18], [23] as examples.
Because both are applied after a system has failed, they are not
designed for online fault detection or transient fault detection.
In other words, directly using these two methods for online
fault detection or transient fault detection may result in fault
misdiagnosis. The cost of misdiagnosis is high because the
fault in the target system not only remains unaddressed but
may worsen. In addition, because the relationship between
faults is complex (specifically, nonlinear), these two methods
are general and heuristic.

In summary, these two methods [18], [23] build two trees
that are used for offline detection and are not always optimal.
By contrast, our method can be used for optimal online fault
detection and transient fault detection, as demonstrated in our
results. The trees built by the two aforementioned methods are
applicable for online detection only for a limited set of cases,
and, only in a subset of those cases, can they achieve the same
efficiency as our optimal trees can. The reasons for this are
twofold:

• The optimal online detection tree is a special element of
the tree set used for online detection.

• The tree set used for online detection is a subset of the
trees used for offline detection.

We provide evidence for the aforementioned claim using an
example in section V .

A. System Layer Heartbeating

A heartbeat is a periodic signal generated by hardware or
software to indicate the liveness of the sender. In general,
the sender periodically sends a heartbeat. When the receiver
does not receive a heartbeat within a given period (timeout),
the sender is determined to have failed [20]. Most liveness
fault detection methods for cloud systems use system layer
heartbeating, which detects the liveness of the target system
by using the heartbeating mechanism. For example, Gokhroo
et al. [24] and Villamayor et al. [25] have used system layer
heartbeating to detect VM liveness; Yadav et al. [26], Rahman
et al. [9], and Zhang et al. [17] have used it to detect physical
host and network connection liveness; and Liu et al. [27],
Soualhia et al. [34], and Lai et al. [35] have used it to detect
cloud service liveness. The length of the timeout for system
layer heartbeating is a key parameter. If the timeout period of
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each heartbeat is too short, the detector misjudges the fault,
but if the period is too long, the detection efficiency is low.
Accordingly, system layer heartbeating is sensitive to detection
time [14]. Therefore, system layer heartbeating [24]–[27],
[34], [35] carries a trade-off between accuracy and efficiency.
Studies [9], [17] have investigated the optimization of the
timeout period of the system layer heartbeating; these studies
have demonstrated that detection accuracy can be improved by
establishing an adjustable timeout period based on historical
data.

VMware vSphere [1] provides an alternative system layer
heartbeating approach, which treats the detection target as
two independent systems (specifically as hardware and vir-
tualization systems). In particular, VMware vSphere uses two
independent system layer heartbeating detectors to detect the
liveness of VMs and hosts separately. In VMWare vSphere, a
master host monitors the network heartbeats of subordinate
hosts every second. When the master host stops receiving
these heartbeats from a subordinate host, it checks whether
the subordinate host is exchanging heartbeats with one of the
datastores to determine whether the fault type is host fault
or network isolation. Furthermore, VMware vSphere evaluates
whether each VM is running by checking for regular heartbeats
and I/O activity from the VM. If no heartbeat or I/O activity is
received, VMware vSphere determines that the VM has failed,
and the VM is thus rebooted to restore service.

B. Zhao et al. Method

Zhao et al. [18] proposed a fault detection method for
permanent faults on hybrid systems and used a printer as
an example. In their method, after a fault is detected, the
decision tree diagnostics are triggered and executed offline.
The recorded data are subsequently analyzed and used for
decision tree diagnosis, which identifies no transient faults. In
addition, because the relationship between faults is irregular,
the aforementioned method is heuristic. The definition of
detector cost used by Zhao et al. also differs from ours.
Specifically, they considered two types of detectors, built-in
sensors and virtual sensors, where built-in sensors have no
detection cost but virtual sensors incur additional detection
costs.

C. Wang et al. Method

Wang et al. [23] proposed a method for identifying system-
level faults. In their method, if there is a fault in the system,
the fault must occur prior to fault diagnosis. Therefore, their
method is used for offline fault diagnosis and cannot detect
transient faults. They also considered faults to be dependent;
because these dependencies were complex (i.e., irregular),
their method is heuristic.

D. Summary

Table II presents a summary of the properties of meth-
ods proposed in the literature. Most existing methods have
an architecture based on system layer heartbeating because
such an architecture is easy to implement. Such methods

use one system-layer heartbeating detector; by contrast, very
few methods, such as VMware vSphere, use two independent
system-layer heartbeating detectors. The operation of VMware
vSphere indicates that fault detection can be more efficient
if more layers are used. Tree-based detection methods [18],
[23] have been designed for offline hardware fault diagnosis in
which the hardware is organized as a multilayer system. These
methods cannot be used directly for online liveness detection.
By contrast, our proposed mechanism can be used for online
liveness detection.

TABLE II
SUMMARY OF THE RELATED WORK

Method
System layer Tree-based

detection detection
One system Two systems Multilayers

Related work [9], [17], [24]–[27] [1] [18], [23]
[34], [35]

Application Liveness detection VM liveness Electronic
type for software systems detection and engineering

or components host liveness fault
detection diagnosis

Online
liveness Yes Yes No
detection
Detection 30 s to 120 s VM: 30 to 120 s N/A

time Host: 13 to 15 s ∗
Method [24]–[27], [34], [35] Heartbeat-based Tree-based

overview use a user-defined method + method
timeout, while storage activity
[9], [17] use an verification

adjustable timeout
∗ The detection time is measured based on the system configuration for

VMware in [13]. Note that the paper [13] only showed the downtime
for each fault cases where downtime is the sum of detection time and
recovery time.

III. MINIMIZATION OF MULTILAYER FAULT DETECTION
TIME

We focused on minimizing the time required for detecting
faults in multilayer systems. In our proposed method, transient
faults are identified and then ignored. Thus, nothing happens
when our proposed method detects that the target system
has recovered from a transient fault. In general, a multilayer
system comprises N layers from layer 0 to layer N − 1. In
each layer, a detector can be installed to detect the faults that
have occurred in that layer. Given that a fault has occurred,
the conditional probability of the fault occurring in layer Li

is Pi, where layers Li to LN−1 are expected to fail because
of the fault in Li. A fault may be transient or permanent. A
transient fault in layer Li can result in temporary failure in
layers Li to LN−1, but the system reverts to a not faulty state
after some time. A permanent fault in layer Li can result in
permanent failure in layers Li to LN−1. To detect a fault,
the detection mechanism can ask a layer detector to conduct
fault detection, and a detector in layer Li requires Ti seconds
to complete detection and return the result. Therefore, the
problem of online liveness fault detection for multilayer cloud
computing systems is defined to find whether a permanent fault
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exists and to find the faulty layer of the system. To simplify
the problem, we make two assumptions. First, we assume that
detectors always return correct results because our focus is
rapid liveness detection rather than Byzantine failure. Second,
we assume that no other faults occur between the time when a
fault occurs to the time when the recovery process ends. The
symbols used in this paper are defined in Table III.

TABLE III
DEFINITIONS OF SYMBOLS

Symbol Description
N Assume that there are N layers
Li The ith layer, (0 5 i 5 N − 1)
Fi The fault of Li, (0 5 i 5 N − 1)
Di The detector for Li , (0 5 i 5 N − 1)
Ti The response time of Di , (0 5 i 5 N − 1)
Pi The conditional probability of Fi (fault percent-

age), (0 5 i 5 N − 1)

Based on the problem defined above, we propose a fault
detection mechanism that efficiently detects permanent faults
in a multilayer system. According to Alwi et al. [21], when a
fault occurs in a system, the main problems to be addressed are
threefold: raising the alarm, accurately diagnosing the fault,
and deciding how to handle the fault. Similar to our mecha-
nism, their fault detection mechanism proceeds according to
the first two of the following steps; however, our mechanism
adds a transient fault confirmation step, as illustrated in Fig. 4.

Fig. 4. Fault detection mechanism.

• First step: In this step, we must determine whether a
fault has occurred. This step can be achieved through
continuous detection in the highest layer, LN−1. After a
fault is detected, if a lower layer exists, we perform the
second step; otherwise, we perform the third step.

• Second step: In this step, a fault detection algorithm
can be utilized to find the faulty layer. Note that the
fault detection algorithm affects the efficiency of fault
detection.

• Third step: In this step, the aim is to determine whether
the fault is a permanent fault and to return the result. Note
that for a layer with a possible transient fault, more time
is required for detecting transient faults; for other layers,
one needs only to determine whether the fault still exists.
Here, we can use a highly rapid fault detection approach
to verify the existence of the fault; for example, a rapid
ping can be used to verify the liveness of the system. If
the detector of the faulty layer does not respond within
the user-defined waiting period, the fault is considered a
permanent fault. If the fault is permanent, the faulty layer
is returned as a result.

The goal of the fault detection mechanism is to detect
permanent faults in the target system. However, transient faults
may occur and obfuscate detection. Because a transient fault
occurs for a limited period, when it disappears, the system
state changes from faulty to not faulty, and the fault detection
algorithm in the second step may identify the wrong faulty
layer. Five events are crucial to fault detection:

• tfo: a transient fault occurs
• tfd: the transient fault disappears
• fss: the first step starts
• sss: the second step starts
• tss: the third step starts

Transient faults must occur first to trigger fault detection, and
the corresponding partial event order is tfo → fss → tfd. The
partial event order of fault detection is fss → sss → tss. In
addition, because we assume that only one fault occurs before
the fault recovery phase, we need not consider the problem
of a second fault, which may cause the fault confirmation to
fail. To ensure that all transient faults can be identified by the
fault detection mechanism, we analyze all possible scenarios.
On the basis of the two partial orders, three possible scenarios
can be established as follows:

• first scenario (Fig. 5): tfo → fss → tfd → sss → tss
• second scenario (Fig. 7): tfo → fss → sss → tfd → tss
• third scenario (Fig. 9): tfo → fss → sss → tss → tfd

In the following subsections, we discuss the accuracy of
the proposed fault detection mechanism for the three scenarios.
The proposed mechanism must return “not faulty” for the three
scenarios.

A. First Scenario

This scenario involves two cases:

1) For the first case, the transient fault may not be found
in the first step of the proposed mechanism; this occurs
when the fault has disappeared before the highest layer
is detected in the first step. Accordingly, in this case, the
proposed mechanism returns “not faulty” and returns to
the fault detection routine.
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Fig. 5. First scenario of transient fault in fault detection.

2) For the second case, the fault is identified in the first
step. In this case, the transient fault is expected to disap-
pear before the start of the second step, according to the
description for this scenario. Consequently, in the second
step, the mechanism is expected to identify the presence
of the fault at the highest layer (Fig. 6). Subsequently, in
the third step, the mechanism is expected to verify the
existence of the fault or continuously detect the liveness
of the highest layer. After verifying the existence of
the fault with any of the two verification actions, the
mechanism returns “not faulty” because the transient
fault has disappeared.

Fig. 6. Detection results of each layer detector in the second case of the first
scenario.

B. Second Scenario

Fig. 7. Second scenario of transient fault in fault detection.

The transient fault is denoted as Fj . The proposed mecha-
nism always returns “faulty” in the first step and begins finding
the faulty layer of the system in the second step. The second
scenario also involves two cases.

1) For the first case, the transient fault Fj may disappear
before detector Dj performs fault detection, and detector
Dj must return “not faulty.” However, other layers
higher than layer Lj may have already been detected as
faulty. Consequently, in the second step, the mechanism
returns a wrong faulty layer number based on the linear
layer dependence. That is, any layer higher than layer

Lj could be erroneously identified as the faulty layer,
as illustrated in Fig. 8. Subsequently, in the third step,
the mechanism verifies the existence of the fault and
then returns “not faulty” because the transient fault has
disappeared in the second step.

2) For the second case, the transient fault Fj has been
detected by detector Dj . In the second step, the mech-
anism returns the faulty layer Lj based on the linear
layer dependence. In the third step, the mechanism then
continuously detects the liveness of the selected layer
Lj . Because the transient fault has disappeared, in the
third step, the mechanism returns “not faulty.”

Fig. 8. Possible detection results from each layer’s detector in the second
scenario.

C. Third Scenario

Fig. 9. Third scenario of transient fault in fault detection.

The third scenario is similar to the second case of the second
scenario. The first and second steps involve the same behaviour
as those observed in the first two scenarios. Therefore, in
the second step, the mechanism returns the faulty layer Lj ,
as presented in Fig. 10. Subsequently, in the third step, the
mechanism continuously detects the liveness of the selected
layer Lj during the user-defined waiting period. Because the
duration of the transient fault Fj must be less than the user-
defined waiting period for Fj , the mechanism in the third step
eventually returns “not faulty.”

Fig. 10. Possible detection results of each layer’s detector in the third scenario.
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Per the preceding discussion, the fault detection mechanism
can always identify transient faults. The third step, which is
based on the faulty layer, involves either detecting the faulty
layer within the user-defined period or detecting a layer that
is 1) higher than or equal to the actual faulty layer and 2)
requires a shorter response time.

Because the fault detection mechanism is general, it can
be applied to other liveness fault detection mechanisms. For
example, because the system layer heartbeating method con-
ceives of the entire computing system as a single layer, the
method comprises the first and third steps. Our proposed
mechanism, by contrast, can utilize various fast detectors to
determine the faulty layer in the second step; it thus comprises
all three steps. To efficiently identify the faulty layer in the
second step, we designed a fault detection algorithm for a
multilayer system, and it is detailed in the next section.

IV. PROPOSED FAULT DETECTION ALGORITHMS

In this section, we describe a proposed fault detection algo-
rithm, the binary search tree algorithm, and a naive algorithm.
Note that the naive algorithm only considers linear layer
dependence, and the proposed algorithm considers linear layer
dependence, Ti, and Pi. Although the proposed algorithm
takes time to build a binary search tree, the binary search
tree can be used indefinitely until the to-be-detected system
changes.

The steps of the naive algorithm are as follows:
• Step 1: After observing FN−1 in the highest layer N−1,

execute the detection method from DN−2 to D0 until its
result is FALSE (TRUE represents a numerical anomaly),
and then name the last detector Dk.

• Step 2: If every detector returns TRUE, then the faulty
layer is layer L0; otherwise, the faulty layer is Lk+1.

A. Binary Search Tree Algorithm

Given an N -layer system, a fault detection mechanism can
ask any layer detector to conduct fault detection on that layer.
When a detector in layer Li detects a fault, the fault detection
mechanism can skip the detection for layers higher than Li

because of linear layer dependence, as illustrated in Fig. 11.
This is a typical problem to which the binary search algorithm
can be applied. However, because each layer has its own
response time Ti and conditional fault probability Pi, the
self-balancing binary search [36] does not always identify
faults efficiently. For example, as displayed in Fig. 16, the
optimal tree in the second step is a rightist tree rather than a
balanced tree. To remedy this problem, we propose a new
algorithm based on a binary search tree that considers Ti

and Pi, thereby minimizing fault detection time. Therefore,
the proposed algorithm necessarily outperforms other types
of binary search tree algorithms when considering Ti and Pi.
Some crucial concepts are defined as follows.

Definition 1. ADT (a, b, c) is a symbol representing the av-
erage detection time (ADT) of a tree comprising Da to Db,
with root Dc.

Definition 2. T (a, b) is a symbol representing the ADT of the
optimal tree; the optimal tree is the tree with the smallest ADT
among all possible trees and is composed of Da to Db.

Fig. 11. State of all layers when a fault occurs at layer j.

The binary search tree with the smallest ADT for identifying
the faulty layer can be found by building all possible binary
search trees and comparing their ADTs. The equations used
to calculate the ADT of the binary search trees and identify
the optimal tree are described as follows.

Fig. 12. Proposed binary search tree.

Fig. 12 presents an example of a binary search tree. In
Fig. 12, fault detection at the root of the tree (Di) should be
performed regardless of what type of fault occurs. Dj or Dk is
then queried respectively if the first result is TRUE or FALSE;
TRUE means that a component in this layer does not respond.
Therefore, the invocation probability of Dj is equal to the sum
of P0 to Pi divided by the sum of the conditional probability
of all faults, and the invocation probability of Dk is equal to
the sum of Pi+1 to PN−1 divided by the same denominator.
In other words, the invocation probability of each node in the
binary search tree is related to the range of its subtrees and the
conditional probability of each fault. The ADT of this binary
search tree (Fig. 12) can be denoted as ADT (0, N − 2, i),
which can be calculated as follows:

ADT (0, N − 2, i) = Ti +

∑i
m=0 Pm∑N−1
m=0 Pm

∗ Tj

+

∑N−1
m=i+1 Pm∑N−1
m=0 Pm

∗ Tk + · · ·
(1)

Subsequently, (1) can be reorganized using the concept of
the subtrees, as follows:
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ADT (0, N − 2, i) = Ti +
Σi

m=0Pm

ΣN−1
m=0Pm

ADT (0, i, j)

+
ΣN−1

m=i+1Pm

ΣN−1
m=0Pm

ADT (i + 1, N − 2, k)

(2)

ADT (0, i, j) is the ADT of the left subtree, and ADT (i+
1, N − 2, k) is the ADT of the right subtree. Equation (2)
reveals that if we try each candidate root i to determine which
detector Di to use as the root of an optimal binary search tree
comprising detectors Da to Db, where a ≤ i ≤ b, then we are
guaranteed to find the optimal binary search tree. Therefore,
the ADT of the optimal tree, T (a, b), can be calculated as
follows:

T (a, b) = min
i=a∼b

[Ti +
Σi

m=aPm

Σb+1
m=aPm

T (a, i− 1)

+
Σb+1

m=i+1Pm

Σb+1
m=aPm

T (i + 1, b)], if a ≤ b

(3)

Because a binary search tree where a > b does not exist,
(3) can only be used when a ≤ b.

B. Proof of Optimality of Proposed Algorithm

We now prove that the binary tree built by the proposed
method is optimal. Let S be the set of trees containing all
binary trees with k detectors Da to Db, where b = a + k − 1
and k ≥ 1. Then (3) can find the tree with the smallest ADT
in S. This proof is based on the following lemma.

Lemma 1. If a tree X (X ∈ S) is found by (3), then there is
no tree Y (Y ∈ S) such that ADT of Y < ADT of X .

Proof. A binary tree can be divided into three parts: the root,
left subtree, and right subtree. Equation (3) reveals that it uses
each possible Di as the root respectively, where a ≤ i ≤ b, to
find the optimal tree. To be precise, (3) traverses all possible
trees in S to find the optimal tree. Therefore, the ADT of X
is equal to the minimal ADT among the elements in S. That
is, the ADT of each element in S cannot be smaller than the
ADT of X . Because the existence of Y contradicts these facts,
Y does not exist; thus, the proof is complete.

C. Binary Search Tree Algorithm Based on Dynamic Program-
ming

According to (3), the problem of building an optimal binary
search tree is a typical optimization problem, and all the
conditions must be met before dynamic programming can be
applied. We now present an example to illustrate the bottom-
up approach of dynamic programming.

This example features a five-layer system, L0 to L4, where
D0 to D3 are used to build a binary search tree. The com-
putation for finding an optimal binary search tree T (0, 3) is
presented in Fig. 13. A table for recording the optimal results
of the subproblems should be filled from left to right and then
from bottom to top, as illustrated in Fig. 14.

Fig. 13. Recursion tree for computation of T (0, 3).

Fig. 14. Table for recording T (a, b); the table is rotated so that the diagonals
run horizontally.

After detailing the concept underlying the application of
dynamic programming, we explain the algorithm for finding
the optimal binary search tree (Algorithm 1) as follows.

Algorithm 1 tree building

Input: detector response time list dtime list, conditional
fault probability list p list

Output: < ADT tree time , Binary Search Tree tree >
1: set a global variable time list
2: set a global variable tree list
3: set a global variable probability list = p list
4: list length = length of dtime list
5: for index = 0 to list length -1 do
6: time list[index][index] = dtime list[index]
7: tree list[index][index] = [index]
8: end for
9: for size = 2 to list length do

10: for x = 0 to list length-size do
11: y = x+size-1
12: op time, op tree = find optimal subtree(x, y)
13: time list[x][y] = op time
14: tree list[x][y] = op tree
15: end for
16: end for
17: tree time = time list[0][list length− 1]
18: tree = tree list[0][list length− 1]
19: return < tree time, tree >

We use Algorithm 1 to find the optimal binary search tree
structure and its ADT through dynamic programming and
Algorithm 2. In Algorithm 1, the input variables dtime list
and p list are lists, where dtime list stores the response
time of the detectors from T0 to TN−2 and p list stores
the conditional probability of the faults from P0 to PN−1.
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Algorithm 2 find optimal subtree

Input: beginning layer number i, end layer number j
Output: < ADT op time, Binary Search Tree op tree

1: op time = maximum number
2: for root = i to j do
3: if (no left subtree) then
4: ltree time = 0
5: else
6: ltree time = time list[i][root− 1]
7: end if
8: if (no right subtree) then
9: rtree time = 0

10: else
11: rtree time = time list[root + 1][j]
12: end if
13: for ind = i to root do
14: left probability += probability list[ind]
15: end for
16: for ind = root + 1 to j + 1 do
17: right probability += probability list[ind]
18: end for
19: p = left probability + right probability
20: ltree p = left probability ÷ p
21: rtree p = left probability ÷ p
22: time = time list[root][root] + ltree p * ltree time

+ rtree p * rtree time
23: if (time < op time) then
24: op time = time
25: record the tree structure into op tree
26: end if
27: end for
28: return < op time, op tree >

Lines 1–3 of the algorithm declare three global variables,
time list, tree list, and probability list, which are used in
both Algorithm 1 and Algorithm 2. The variable time list is
an (N−1)× (N−1) matrix that stores the ADTs of subtrees,
and the variable tree list is an (N −1)× (N −1) matrix that
stores the structures of subtrees. Note that time list[m][n] is
used to store the ADT of the subtree comprising detectors Dm

to Dn, and tree list[m][n] is used to store the structure of
the subtree comprising detectors Dm to Dn. The for loop of
lines 5–8 initializes the values of time list[index][index] and
tree list[index][index]. The for loop of lines 9–16 then uses
Algorithm 2 to compute time list[x][y] and tree list[x][y]
for all 0 ≤ x < y ≤ (N − 2). In the first iteration,
when size = 2, the loop computes time list[x][x + 1] and
tree list[x][x + 1] for x = 0, 1, ..., (N − 3). The second
iteration, with size = 3, computes time list[x][x + 2] and
tree list[x][x + 2] for x = 0, 1, ..., (N − 4), and so forth.
Finally, Algorithm 1 returns the ADT and structure of the
optimal binary search tree comprising detectors D0 to DN−2.

Algorithm 2 is a subfunction of Algorithm 1. In Algo-
rithm 2, the input variables i and j are integers, which
represent an optimal binary search tree to be found that

comprises detectors Di to Dj . Equation (3) demonstrates
that the for loop of lines 2–27 tries each candidate index
root to determine which detector Droot to use as the root
of the optimal binary search tree. In lines 3–7 and lines 8–
12, the procedure yields the ADTs of the optimal left subtree
and optimal right subtree, respectively. In lines 13–21, the
procedure computes the invocation probabilities of the left
and right subtrees. Subsequently, the procedure computes the
ADT in line 22, based on (2). In lines 23–26, as long as the
procedure finds a more optimal detector Droot to use as the
root, it saves the current ADT and tree structure in op time
and op tree, respectively. Finally, Algorithm 2 returns a data
structure comprising op time and op tree after the loop ends.

As evident in the preceding discussion, an optimal binary
search tree can be built by the proposed algorithm. The time
complexity of a naive and optimal binary tree is O(n2) and
O(log n), respectively. Therefore, the proposed algorithm is
more efficient.

V. PERFORMANCE EVALUATION IN A MULTILAYER
CLOUD COMPUTING SYSTEM

In this section, we test the performance of our proposed
mechanism by applying it on a real cloud computing system
(OpenStack). We implemented a fault detection system based
on the proposed mechanism and algorithms (Fig. 15). This
cloud computing system comprises a detection machine along
with several virtualized compute hosts (in the compute pool)
to be detected. The machine specifications are presented in
Table IV. The fault detection system operates on the detection
machine and can query all layer detectors. Based on the
liveness of each layer, all layer detectors can return only TRUE
or FALSE, where TRUE indicates that the layer is faulty and
FALSE indicates that the layer is not faulty. The liveness of
each layer is determined from the perspective of the user; that
is, the layer is not faulty only when the user can recognize
that the layer is alive. A compute host to be detected can
be abstracted as comprising a host part and a VM part. The
host part comprises four layers, namely, the power, hardware,
host OS, and network layers, of which the host OS layer
and the network layer have medium and long transient faults
respectively. The VM part comprises three layers as presented
in Table V: the VM process, guest OS, and VM network layers,
of which the guest OS layer and the VM network layer have
short transient faults.

TABLE IV
MACHINE INFORMATION

Role Machine type Operating system
Detection machine ASUS MD790 Ubuntu 16.04

Compute hosts ASUS MD790 Ubuntu 16.04

With regard to the channel for querying the detector, the
detectors for the VM network, guest OS, and VM process
layers return results over the network because the user also
controls the VM through the network. The detectors for the
host OS, hardware, and power layers return results via the
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Fig. 15. The user interface to enable layer detectors for the proposed
mechanism on OpenStack.

intelligent platform management interface (IPMI) channel.
Because the response time of the VM network, guest OS, and
host OS layer detectors are relatively short, these detectors
can perform complete detection. Therefore, in this case, only
detection by an unreliable detector in the network layer is
divided into two phases. The user-defined waiting period for
the general network layer detector is 30 s. In the proposed
mechanism, we set the fault detection timeout period to 1 s
(in the second step) and the transient fault detection timeout
period to 29 s (in the third step). In addition, we assume that
the fault detection system can query only one layer detector
at a time. We made this assumption considering the fact that
many layer detectors share the same channel, such as the IPMI
[13].

TABLE V
DESCRIPTION OF EACH LAYER

Layer Detector Faults
VM Network ICMP query Permanent and tran-

sient faults
Guest OS Watchdog in VM Permanent and tran-

sient faults
VM Process Software detector

based on Libvirt
Only permanent
faults

Network ICMP Permanent and tran-
sient faults

Host OS Watchdog in host Permanent and tran-
sient faults

Hardware IPMI Only permanent
faults

Power IPMI Only permanent
faults

We then compared the performance of two detectors—
one with no auxiliary detection mechanism (system layer
heartbeating) and one with an additional detection mechanism
(our proposed mechanism)—in handling faults that we injected
into a virtualized compute host in the cloud computing system.

We now demonstrate that our proposed mechanism per-
formed well in the cloud computing system. To construct the
binary search tree, we used data from Lu’s report [22] on the
number of outages and outage types of two clusters: Platinum
and Titan (Table VI). Because the data in Table VI cover
only three layers and because our virtualized compute host

has seven layers, we mapped the software layer described
in Table VI to the host OS, network, VM, guest OS, and
VM network layers in our system. To estimate the fault
percentages in the virtualized compute host, we used the
average fault percentages listed in Table VI; we assumed the
fault percentages of the five layers to be equal. Therefore,
the percentages of the faults for the five layers should be
80.3%/5 = 16.1%. The hardware and the power layers are
unchanged, and their fault percentages should thus be 2.6%
and 17.2%, respectively. The fault percentages Pi are listed in
Table VII. The table also lists the response time Ti for each
layer detector Di. In this case study, the data in Table VII
were used to construct the proposed binary search tree for
fault detection in the second step of the proposed mechanism,
which is illustrated in Fig. 16.

To evaluate the performance of the proposed mechanism, we
injected a fault into each layer of the virtualized compute host
and measured the time from fault injection to fault detection.
Each injected fault for a particular layer is defined as a
fault case in this experiments. We repeated each fault case
10 times and calculated the corresponding average fault-case
detection time, as shown in Table VIII. The fault cases with the
corresponding injection methods used in this study are listed
as follows:

• VM network: disable the VM network interface.
• Guest OS: crash the guest OS kernel.
• VM process: kill the VM process.
• Network: disable the host network interface.
• OS: crash the host OS kernel.
• Hardware: simulate high CPU temperature by injecting

error values into the detector and immediately crash the
host OS.

• Power: power off the host.

The experimental results obtained for the fault cases are
presented in Table VIII. Notably, the fault detection times
for both the network layer fault and the hardware layer fault
were relatively long. The average fault-case detection time for
the network layer fault was long because the network fault
might have been transient (e.g., due to a busy network); thus,
the proposed mechanism required 29 s in the third step to
distinguish whether the fault was transient. In addition, the
average fault-case detection time for the hardware layer was
long because the proposed mechanism sequentially queried
multiple detectors (D6, D0, D3, D2, and D1) to identify that
the fault was at the hardware layer (Fig. 16).

On the basis of the fault type percentage (Pi) in Table VII
and the average fault-case detection times in Table VIII, the
ADT of the proposed mechanism from the experiment was
8.91 s, which is 70.3% faster than the detection time (30 s)
of the system layer heartbeating approach [1], [30], [31]. The
ADT from experiments was slightly lower than the theoretical
ADT, which was calculated to be 9.4 s. This was possibly
because a detector might have returned the detection result
immediately when the layer was healthy. For example, the
detector of the VM network layer takes less than 0.1 s to
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obtain the detection result if the network layer is healthy (not
faulty).

TABLE VI
PERCENTAGE OF SYSTEM OUTAGE TYPES WITH NO CONSIDERATION OF
SYSTEM MAINTENANCE IN TWO CLUSTERS: PLATINUM AND TITAN [22].

Software(%) Hardware(%) Power(%)
Platinum 99.9 0.1 0

Titan 60.6 5.1 34.3
Average 80.3 2.6 17.2

TABLE VII
INFORMATION FOR EACH LAYER OF A VIRTUALIZED COMPUTE HOST IN

THE CLOUD SYSTEM

Layer i Layer Ti (s) Pi (%)
name

6 VM Network 2.0 16.1
5 Guest OS 1.0 16.1
4 VM Process 1.1 16.1
3 Network 0.53 16.1
2 Host OS 3.45 16.1
1 Hardware 0.81 2.6
0 Power 0.06 17.2

Fig. 16. Proposed mechanism for case study.

TABLE VIII
AVERAGE FAULT-CASE DETECTION TIME (IN SECONDS) FOR EACH FAULT

CASE (ED: EXPERIMENTAL DATA; TD: THEORETICAL DATA; NET:
NETWORK)

Power HW Host Net VM Guest VM
OS process OS Net

ED 1.64 5.96 6.28 36.28 3.68 3.68 2.68
TD 2.06 6.85 6.85 35.04 4.69 4.69 3.59

A. Comparison with Zhao et al. Method

The decision tree built by the Zhao et al. method is shown in
Fig. 17. Using their detector definitions, we treat detectors in
the power and hardware layers as built-in sensors, and we treat
the other detectors as virtual sensors. According to Fig. 17,
five detectors are required to accurately determine that there

are no faults in the target system. If the target system fails
during VM network detection, any fault is identified as a VM
network fault; this means that the Zhao et al. method cannot
be used for online fault detection.

To apply the Zhao et al. method to online fault detection,
we must first determine that a fault has occurred, which can
be achieved by performing detection on the highest layer.
The new corresponding decision tree is presented in Fig. 18.
This method, however, still cannot detect transient faults.
For example, if a transient fault occurs, the detection system
considers the target system to be faulty. This is an incorrect
judgment because the target system should be judged as
healthy after the transient fault has disappeared.

Therefore, in the experiment, we assumed that all faults
were permanent. In the experiment, the ADT of the Zhao et
al. method was 4.58 seconds.

Fig. 17. Decision tree from Zhao et al. method.

Fig. 18. New decision tree.

B. Comparison with Wang et al. Method

The fault diagnostic tree built by the Wang et al. method
is presented in Fig. 19. According to the fault diagnostic tree,
two detectors are required to determine that there are no faults
in the target system. As with the Zhao et al. method and for
the same reasons, the Wang et al. method cannot be used for
online fault detection.

To apply the Wang et al. method for online fault detection,
we must first determine that a fault has occurred, which can
be achieved by performing detection on the highest layer. The
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new corresponding fault diagnostic tree is presented in Fig. 20.
However, as is the case with the Zhao et al. method and for
the same reasons, the Wang et al. method still cannot detect
transient faults.

Therefore, in the experiment, we assumed all faults to be
permanent. In the experiment, the ADT of the Wang et al.
method was 6.17 seconds.

Fig. 19. Fault diagnostic tree from the Wang et al. method.

Fig. 20. New fault diagnostic tree.

Fig. 21. Comparison of our proposed mechanism with counterpart methods
with respect to performance in the absence of transient faults.

The proposed mechanism can save time in cases where
transient fault identification is relevant. Specifically, in the
experiments, the ADT of the proposed mechanism was 4.24
seconds when there were no transient faults, outperforming
its counterparts (Fig. 21). Furthermore, the detection time of
the proposed mechanism was 70.3% shorter than that required
by system layer heartbeating without any auxiliary detection
mechanism.

C. Influence of Network Fault

The experimental results demonstrated that network faults
greatly affect the ADT of the proposed mechanism; this is
indicated by the finding that the detection time for the network
fault was at least five times as long as those for other fault
cases. This is because the network layer detector must consider
the transient fault problem (such as packet loss or a busy
network). On the basis of the default fault detection time
of existing high-availability cloud systems (such as VMware
vSphere HA [1], HAProxy [30], and Pacemaker [31]), we
set the maximum duration of network layer faults to 30 s.
However, the maximum duration of network faults is tunable.
The value could be as high as 120 s in an unreliable network
environment, according to the operation of VMware vSphere
HA. When we increased the maximum duration of network
layer faults to 120 s in our mechanism, the new theoretical
ADT based on Table VII became 23.85 s, which was more
than twice as long as the original theoretical ADT. In scenarios
where the system is running in a highly reliable network
environment, the maximum duration of network faults can be
reduced further. If we assume that the value could be decreased
to 10 s, the new theoretical ADT would be 6.14 s, which
is 65% of the original theoretical ADT. In conclusion, the
ADT of the proposed fault detection mechanism can be very
short only if the cloud system has a highly reliable networking
infrastructure. In either case, the proposed mechanism is ex-
pected to outperform the system layer heartbeating approach,
especially in an unreliable networking environment (23.85
vs. 120 s, with the assumption of the fault percentages in
Table VII).

VI. EXTENSION TO PARALLEL DETECTION

In this section, we discuss the application of our proposed
mechanism to the case of parallel detection. First, we explain
why direct parallel detection cannot be used in many cases and
then present how one ought to use our proposed mechanism
in parallel detection. Second, we evaluated the performance
of the proposed parallel detection mechanism on a system of
five layers. We used five instead of seven layers (as shown in
Table VII) in the experiments because the power, hardware,
and OS detectors cannot run concurrently in a physical host.

A. Parallel Detection Mechanism

In practice, some detectors, especially hardware detectors,
cannot be queried in parallel. For example, the detectors for the
host OS, hardware, and power components cannot be queried
concurrently if they are implemented on IPMI. To support
parallel detection, we can only use fault detectors that can
be queried concurrently. Therefore, we cannot use a parallel
detection mechanism for the seven-layer system shown in
Table VII. To enable parallel detection, we must reorganize
the seven-layer system into a five-layer system, comprising the
host OS, network, VM process, guest OS, and VM network
layers.

A naive parallel detection mechanism, which periodically
queries all detectors in parallel and collects the detection
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results, can be used in the case of parallel detection without
any consideration of transient faults. However, in cases where
transient faults must be considered, this approach may lead to
misjudgment. For example, as illustrated in Fig. 22, a transient
network fault was injected into the aforementioned five-layer
cloud system at 0.8 s after the start of periodic parallel
detection. The network detector responded that the network
service was not faulty at the time point of 0.6 s, and other
detectors subsequently responded by sending their detection
results after the time point of 0.8 s, as shown in Fig. 22 (right
panel). Accordingly, the system misjudged the VM process
as faulty. This could lead to a catastrophe where the VM
is destroyed and then restarted. To solve the problem shown
in Fig. 22, we can reuse the idea underlying the mechanism
proposed in Section III, as follows:

1) The system raises an alarm when a fault occurs. This can
be achieved through continuous detection of the highest
layer (LN−1).

2) The system executes the following tasks after an alarm
has been issued:

a) Send a message to each layer detector (D0 to
DN−2) for fault detection.

b) Wait until all response messages from the layer
detectors have been received.

c) Use a binary search algorithm to find the faulty
layer based on the response results. Notably,
step 2c occurs very quickly. Therefore, in practice,
a sequential search algorithm can be used in place
of a binary search algorithm.

3) The system determines whether the fault is a permanent
fault and returns the result.

The soundness of this parallel detection mechanism is demon-
strated in Sections III-A–III-C.

Fig. 22. Case of transient fault in naive periodic parallel detection, where a
network transient fault is injected at the time point of 0.8 s.

B. Experiment Results of Parallel Fault Detection

Table IX lists the average fault-case detection times for
each fault case detected using the proposed parallel detection
mechanism on the five-layer system. In the experiments, we
reused the settings of the environment and the fault injection

methods described in Section V. The major differences be-
tween the settings pertained to the inapplicability of the power
and hardware detectors to the experiment featuring parallel
detection. The experimental results listed in Tables VIII and
IX demonstrate the following.

1) As presented in Table IX, the average fault-case de-
tection times were very similar, except for the average
fault-case detection time for the network layer. This
similarity is because Steps 1 and 2 in the parallel
detection mechanism had the same execution time for
every fault case. The average fault-case detection time
for the network layer was much longer than that for the
other layers because in Step 3, a waiting time of 29 s
was required for transient fault verification.

2) The parallel detection mechanism outperformed the pro-
posed mechanism with the proposed sequential dynamic-
programming–based binary search tree algorithm in
terms of the average fault-case detection time for the
host OS layer. Nonetheless, the sequential mechanism
was approximately 1 s faster (1.17 and 1.49 s faster,
respectively) when the hardware and host OS faults
were injected; the mechanism was 3.15 s slower when
the power fault was injected. This is because the tree
structure of the sequential algorithm prefers power fault
detection.

3) The sequential mechanism outperformed the parallel
mechanism in terms of the average fault-case detection
time for the VM process, guest OS, and VM network
layers by 1.15, 1.12, and 2.14 s, respectively. This is
because the parallel mechanism had to wait for the
slowest fault detector (host OS detector) and because
the software-based detectors were faster than the slowest
fault detector.

4) The ADT of the parallel mechanism was 9.48 s, which
was 0.57 s slower than that of the sequential mechanism.
This is because the parallel mechanism could not fully
utilize fast hardware-based detection components and
had to wait for the response of the slowest fault detector.

TABLE IX
AVERAGE FAULT-CASE DETECTION TIME (IN SECONDS) FOR EACH FAULT

CASE IN PARALLEL DETECTION.

Host OS Network VM Guest VM
process OS Network

4.79 33.76 4.83 4.80 4.82

VII. CONCLUSION AND FUTURE RESEARCH DIRECTIONS

In this paper, we propose an efficient online liveness fault
detection mechanism for multilayer cloud computing systems,
in particular for virtualized compute hosts on the cloud. The
proposed mechanism is based on the integration of existing
detectors to quickly detect liveness faults, rather than on new
detectors. In the virtualized compute hosts designed for the
experiment, the proposed mechanism significantly reduced the
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time required for detecting certain liveness faults by using de-
tectors in each layer, thereby improving average fault detection
efficiency. Our proposed mechanism also exhibited the highest
efficiency under experimental conditions. According to the
experimental results in Section V , the proposed mechanism,
relative to system layer heartbeating, required a 70.3% shorter
ADT and had the added ability to locate the specific layer of
the fault while yielding comparable reliability. Locating faults
within specific layers allows for effective application of fault
recovery methods. In addition, our proposed mechanism had
a 7.4% and 31.3% shorter ADT relative to two counterpart
methods in the literature.

Our proposed mechanism is limited in that detectors at
a given layer are unable to detect faults in other layers.
Detection time in our method can be reduced if a layer’s
detector can detect and distinguish faults in both its layer
and other layers. This characteristic within a multilayer system
is termed detector dependency. The following is an example.
Because a VM network detector detects faults through Internet
control message protocol, VM network detection is based on
the network layer. If the VM network layer detector can detect
a network layer fault, there should be a shortcut from the
VM network detector node to the network detector node in
the proposed binary search tree. Thus, detection on all layers
above the network layer can be skipped, and detection time
can be reduced. This is a potential topic for future research.
Future studies can construct a more reliable model that covers
a sequence of faults (i.e., more than one fault) occurring in
one detection round.
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