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Financially distressed prediction (FDP) has been a widely and continually studied topic in the field of
corporate finance. One of the core problems to FDP is to design effective feature selection algorithms.
In contrast to existing approaches, we propose an integrated approach to feature selection for the FDP
problem that embeds expert knowledge with the wrapper method. The financial features are categorized
into seven classes according to their financial semantics based on experts’ domain knowledge surveyed
from literature. We then apply the wrapper method to search for ‘‘good’’ feature subsets consisting of top
candidates from each feature class. For concept verification, we compare several scholars’ models as well
as leading feature selection methods with the proposed method. Our empirical experiment indicates that
the prediction model based on the feature set selected by the proposed method outperforms those mod-
els based on traditional feature selection methods in terms of prediction accuracy.

� 2013 Elsevier Ltd. All rights reserved.
1. Introduction

Financially distressed prediction (FDP) is a challenging problem
that generates extensive studies over the past decades (Altman,
1968; Hua, Wang, Xu, Zhang, & Liang, 2007; Ohlson, 1980; Tam
& Kiang, 1992). Recent outbreaks of corporate financial crises
worldwide have intensified the need to reform the existing finan-
cial architecture. It is generally believed that symptoms and alarms
can be observed prior to a business encountering financial diffi-
culty or crisis. The overall objective of business crisis prediction
is to build models (or predictors) that can extract knowledge of risk
evaluation from past observations and to evaluate business crisis
risk of companies with a much broader scope (Altman, 1968; Bea-
ver, 1966; Zmijewski, 1984).

The FDP problem is a typical binary classification problem in the
context of the pattern recognition theory, where a predictor at-
tempts to assign one of the two labels, distressed company (D)
vs. non-distressed company (ND), to an input sample (Tsai & Wu,
2008). There are two basic issues that have profound impacts on
the performance of a predictor (Ben-Bassat, 1982; Lin, Liang, &
Chen, 2011): choosing the right feature selection algorithm to find
the optimal feature set and selecting the right classification algo-
rithm to build the predictor using that feature set (shown in Fig. 1).

Numerous scholars have conducted research into business crisis
prediction. In the early 1960s, scholars applied statistical methods
such as Multiple Discriminate Analysis (MDA) (Altman, 1968; Bea-
ver, 1966) and Logit (Hua et al., 2007; Ohlson, 1980; Zmijewski,
1984). In recent years various machine learning algorithms have
been used. Examples are the Decision Tree (DT) (Tam & Kiang,
1992), Neural Network (Ozkan-Gunay & Ozkan, 2007; Tam &
Kiang, 1992), Support Vector Machine (SVM) (Chandra, Ravi, &
Bose, 2009; Chen & Hsiao, 2008; Ding, Song, & Zen, 2008; Hua
et al., 2007; Shin, Lee, & Kim, 2005; Wu, Tzeng, Goo, & Fang,
2007), and Case-Based Reasoning (CBR) (Jo & Han, 1996; Li &
Sun, 2008; Li & Sun, 2009; Li, Sun, & Sun, 2009). Table 1 summa-
rizes the classifiers used in financial prediction. These previous
studies all focused on the second issue of the pattern recognition
problem, i.e. to explore better ways of predictor construction based
on a chosen classification algorithm. Over the decades, it seems
very difficult to significantly improve the forecasting accuracy fol-
lowing the existing approaches (Cho, Kim, & Bae, 2009). In this re-
search, we turn our focus to the feature selection method, which is
the other design issue toward the construction of a good predictor.

The feature selection methods adopted in previous FDP studies
fall in one of two approaches: expert recommendation and statis-
tical methods. The advantage of relying on expert recommendation
for knowledge and experience is its ability to cope with the com-
plex and unstructured nature of the business problems. As the ra-
pid changes in business environment and government regulations,
more aspects need to be considered and the size of the feature set
quickly grows beyond the limit of human comprehension. Recently
scholars have applied statistical methods, such as T-test (Gudmund
& Helmut, 1987), discriminant analysis (Chen & Hsiao, 2008; Wil-
liam, 1980), Stepwise Selection (Jo & Han, 1996; Kleinbaum, Klein,
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Fig. 1. Two major factors influencing financial distressed prediction.

Table 1
Classifiers used in financial prediction studies.

Classifiers Paper studied

MDA Altman (1968), Beaver (1966) and Chuvakhin and Gertmenian (2003)
Logit Regression Ohlson (1980), Hua et al. (2007), Tam and Kiang (1992) ad Zmijewski (1984)
Neural Network Tam and Kiang (1992), Lee, Han, and Kwon (1996) , Huang et al. (2004) and Ozkan-Gunay and Ozkan, 2007
Decision Tree Tam and Kiang (1992)
Support Vector Machine (SVM) Chandra et al. (2009), Ding et al. (2008), Hua et al. (2007), Shin et al. (2005) and Wu et al. (2007)
Case-Based Reasoning Jo and Han (1996), Li and Sun (2008), Li et al. (2009) and Li et al. (2009)
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& Pryor, 2002; Sun & Li, 2009), or combination of these methods
(Cho et al., 2009; Ding et al., 2008), in order to select the most ‘‘rel-
evant’’ features from a larger feature set. These statistic methods
are categorized as the filter approach by the machine learning the-
ory (Blum & Langley, 1997; Kohavi & John, 1997). The advantage of
using the filter approach is its computational and statistical scala-
bility (Guyon & Elisseeff, 2003). A common disadvantage is that
this approach ignores the interaction with the classification algo-
rithm used to build the predictor, and thereby, may lead to less
accurate prediction performance (Saeys, Inza, & Larrañaga, 2007).

Recently, various approaches, such as the wrapper approach
and the embedded approaches, have been proposed in an attempt
to find more effective subsets of features (Blum & Langley, 1997;
Kohavi & John, 1997). In contrast to the filter approach, these
methods assess the subsets of features according to their useful-
ness to a given predictor. Consequently, these methods usually in-
volve a searching process for a good feature subset, and usually
require massive amount of computation (Guyon & Elisseeff,
2003; Liu & Yu, 2005). Therefore, they are applicable to problems
with a smaller feature size because the search space becomes
intractable as the size increases.

Kim, et al. suggested that the business problems are unstruc-
tured in nature; therefore combining machine-learning driven pre-
dictors with human-driven predictors may be a better approach
(Kim, Min, & Han, 2006). In light of their observation, we propose
an integrated approach to feature selection for the FDP problem
that embeds expert knowledge with the wrapper method. We cat-
egorize the financial features into seven classes according to their
financial semantics based on experts’ domain knowledge from lit-
erature. We then apply the wrapper method to search for ‘‘good’’
feature subsets consisting of top candidates from each feature
class. The search space of the wrapper method therefore effectively
shrinks because features have been pre-classified before the wrap-
per method is applied. We conducted the case studies of listed
companies in Taiwan’s Stock Exchanges. This study shows that
the proposed integrated method significantly outperforms the
existing feature selection approaches commonly found in
literature.
2. Related works

Business crisis prediction is a challenging problem that has
stimulated numerous studies over the past few decades. Early
studies tend to treat financial ratios measuring profitability, liquid-
ity and solvency as significant indicators for the detection of finan-
cial difficulties. However, reliance on these financial ratios can be
problematic. The order of their importance, for example, remains
unclear as different studies suggest different ratios as the major
indicators of potential financial problems.

2.1. Financial crises and financial features

Despite the numerous definitions of business crises, the general
meaning should include some narrower definitions like bank-
ruptcy and shut-down and some broader definitions like failure,
decline and distress. According to Beaver (1966), a business crisis
occurs when a firm announces its bankruptcy, bond default,
over-drawn bank account or nonpayment of preferred stock divi-
dends. As financial factors are mostly backward-looking, point-
in-time measures, prediction models examining only financial fea-
tures are inherently constrained. This paper accordingly would like
to further explore the role of non-financial features in corporate
business crisis prediction.

The pioneering study of Beaver (1966) introduces a univariate
approach of discriminant analysis to predict financial distress.
The method was later expanded into a multivariate framework
by Altman (1968). Discriminant analysis had been the primary
method of business failure prediction until 1980s during which
the use of logistic regression method was emphasized. Standard
discriminant analysis procedures assume that the variables used
to characterize the members of the groups under investigation
are in multivariate normal distribution. However, in real life, devi-
ations from the normality assumptions are more likely to take
place, and this violation may result in biased results. A non-linear
logistic function is preferred over multivariate discriminant analy-
sis (MDA), and there are researchers (Altman, 1968; Gunther &
GrUning, 2000; Huang, Chen, Hsu, Chen, & Wu, 2004) claiming that
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even when all the assumptions of MDA hold, a Logit model is vir-
tually as efficient as a linear classifier. Considerable discrepancy is
observed in the prediction accuracy reached by the three methods
since using different methods leads to different prediction models
that adopt different financial ratios.

Major financial features selected for financial distress predic-
tion include financial leverage, long-term and short-term capital
intensiveness, return on investment, EPS and debt coverage stabil-
ity, etc. Selection of these features, however, is seldom based on a
theory capable of explaining why and how certain financial factors
are linked to corporate bankruptcy (Gunther & GrUning, 2000;
Huang et al., 2004). However, the selected features could have
huge impact on financial prediction. The financial features consid-
ered in this paper are summarized in Table 2. The features are se-
lected because they are frequently used in previous studies dealing
with bankruptcy prediction and/or business failure prediction, as
well as because of their availability in the dataset.
2.2. Categories of financial ratios

Financial ratio analysis groups the ratios into categories which
tell us about different facets of a company’s finances and opera-
tions. An overview of some of the categories of ratios is given
below.

� Leverage ratios which show the extent that debt is used in a
company’s capital structure.
� Liquidity ratios which give a picture of a company’s short term

financial situation or solvency.
� Operational ratios which use turnover measures to show how

efficient a company is in its operations and use of assets.
� Profitability ratios which use margin analysis and show the

return on sales and capital employed.
� Solvency ratios which give a picture of a company’s ability to

generate cash flow and pay it financial obligations.
Table 2
Selected financial ratios listed by categories.

Variable Meaning Variab

Liquidity ratios Opera
X1 Current ratio X23

X2 Acid test X24

X3 Quick assets/total assets X25

X4 Current assets/total assets X26

X5 Working capital/total assets
X6 Working capital/sales Profita
X7 No-credit interval X27

X28

Solvency ratios X29

X8 Interest expenses/equity X30

X9 Market value equity/book value of total debt X31

X10 Cost of interest-bearing debt X32

X11 Interest expense/revenue X33

X34

Growth ratios X35

X12 Total equity growth X36

X13 Total assets growth X37

X14 Ordinary income growth X38

X15 Return on total asset growth X39

X16 Net income growth
X17 Sales growth Capita

X40

Cash-flow ratios X41

X18 Cash flow/total assets X42

X19 Cash flow/total liabilities X43

X20 Cash flow/equity
X21 Cash re-investment ratio Other
X22 Funds provided by operations/total liabilities X44
A closer examination of the above 21 constructed features re-
veals some interesting patterns of how domain knowledge is rep-
resented through different combinations of raw accounting
variables. For example, among the 21 constructed features, 8 of
them are constructed by dividing raw accounting variables by total
assists, 2 of them are constructed by dividing the variables of loan-
specific assets by gross loans and 4 of them are constructed by
dividing total sales. These constructed features in some sense re-
flect preliminary domain knowledge of normalization. The goal of
normalization is to eliminate the effects of some irrelevant factors
in describing a company’s financial condition (Zhao, Sinha, & Ge,
2009). While the 21 financial features are all in relatively simple
forms, they constitute important domain knowledge, which is
not explicitly captured in, and cannot be automatically learned
from, the raw accounting data. Without some knowledge of the
financial domain, even a data mining specialist would not know
how to combine different raw accounting variables in meaningful
ways to construct such intermediate concepts.
3. Business crisis prediction model: the background

Substantial literature can be found on business crisis prediction.
We briefly review methods used in this research, i.e., the Iterative
Relief and Support Vector Machine (SVM).

3.1. Feature selection

Feature selection is one of the two important factors contribut-
ing to the performance of a prediction model for any classification
problem. The objectives of feature selection are three-fold: (a) bet-
ter performance, (b) faster and more cost-effective models, and (c).
deeper insight into the underlying processes. (Guyon & Elisseeff,
2003)

The feature selection methods adopted in previous studies of
the FDP includes T-test (Gudmund & Helmut, 1987), discriminant
le Meaning

tional ratios
Payable turnover ratio
Total assets turnover
Receivable turnover ratio
Fixed assets turnover

bility ratios
Operating income after tax/equity
Operating income after tax per share
1 if net income was negative for the last two years, otherwise, 0
Pre-tax income per share
Retained earnings/total assets
Operating income before tax/total assets
Operating income after tax/total assets
Operation income per employee
Gross profit/net sales
Realized gross profit/net sales
Sales per employee
Net income/total assets
Net income/equity

l structure ratios
Equity/total assets
Fixed assets per employee
Liabilities/total assets
One if total liabilities exceeds total assets, zero otherwise

ratios
Size



Fig. 2. The filter approach to feature selection.
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analysis (Chen & Hsiao, 2008; William, 1980), Stepwise Selection
(Jo & Han, 1996; Kleinbaum et al., 2002; Sun & Li, 2009), or combi-
nation of these methods (Cho et al., 2009; Ding et al., 2008). These
methods are categorized as the filter approach in the context of
machine learning taxonomy (Blum & Langley, 1997; Kohavi & John,
1997). These statistic methods are categorized as the filter ap-
proach by the machine learning theory (Blum & Langley, 1997;
Kohavi & John, 1997). As shown in Fig. 2, the filter approach selects
the most ‘‘relevant’’ features from a larger feature set based on
some relevance indices; and this selection process is independent
from the classifier used to build the prediction model.

The methods based on the filter approach are usually computa-
tionally efficient and statistically scalable when the feature set un-
der consideration is large in size (Blum & Langley, 1997; Guyon &
Elisseeff, 2003). A common disadvantage of this approach is that
the performance of the prediction model may be inferior (Saeys
et al., 2007). One of the reasons is that the filter approach ignores
the interaction with the classification algorithm used to build the
predictor. Recent studies have demonstrated that relevance does
not imply optimality, and vice versa (Kohavi & John, 1997). An-
Fig. 3. The wrapper approa
other reason is that the filter methods mentioned above do not
model the feature dependency. Guyon and Elisseeff pointed out that
a feature that is completely irrelevant by itself can provide a signif-
icant performance improvement when taken with others (Guyon &
Elisseeff, 2003). Furthermore, perfectly correlated variables are truly
redundant in the sense that no additional information is gained by
adding them; however, two features with high correlation do not
mean they are not complimentary (Guyon & Elisseeff, 2003).

In contrast to the filter approach, wrappers are proposed as an
alternative approach to the feature selection problem (Blum &
Langley, 1997; Kohavi & John, 1997). A wrapper assesses the sub-
sets of features according to their usefulness to a given classifier
(shown in Fig. 3).This approach also takes the feature dependency
issue into consideration. Consequently, the methods of this ap-
proach usually involve a searching process for a good feature sub-
set, and therefore require massive amount of computation (Guyon
& Elisseeff, 2003; Liu & Yu, 2005). The search space quickly be-
comes intractable when the size of the feature set increases if ex-
hausted search is applied. Many wrapper methods adopts heuristic
search strategy in order to make it feasible; examples are
ch to feature selection.



Table 3
Characteristics summary of the feature selection approaches.

Filter Wrapper

Advantages 1. Fast 1. Interacts with classifier
2. Scalable 2. Models feature dependencies
3. Independentof
classifier

Disadvantages 1. Ignores feature
dependencies

1. Computationally intensive

2. Ignores interaction
with the classifier

2. Classifier dependent selection

3. Risk of overfitting

Examples ANOVA (Gudmund &
Helmut, 1987)

Sequential forward selection
(Kittler, 1978)

Stepwise logit
regression (Kleinbaum
et al., 2002)

Sequential backward selection
(Kittler, 1978)

Discriminant analysis
(William, 1980)

Randomized hill climbing (Kohavi
& John, 1997)

Iterative RELIEF (Sun,
2007)

Genetic algorithms (Goldberg,
1989)
Recursive feature elimination
(Guyon, Weston, Barnhill, &
Vapnik, 2002)
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sequential forward selection (Kittler, 1978), sequential backward
selection (Kittler, 1978), randomized hill climbing (Kohavi & John,
1997), and genetic algorithms (or GA) (Goldberg, 1989).

Sexton et al. found that the performance of the prediction model
using GA-based feature selection algorithm is better than the model
using CATLRN after they studied 137 bankrupted US banks (Sexton,
Sriram & Etheridge, 2003). Jeong et al., on the other hand, reported
that there were no significant performance difference between mod-
els using GA and those using other feature selection methods in a
study involves 1271 bankrupted Korean firms (Jeong, Min & Kim,
2012). Both studies were based on privately collected datasets.
Huang and Liu studied the TEJ dataset, a public dataset that contains
companies listed in the stock exchanges of Taiwan and China
(Huang & Liu, 2006). Their study indicates that GA is a better algo-
rithm for feature selection than gain-ratio. However, they remind
reader that this result is inconclusive due to an ill experiment design
that ‘‘may result in a favorable influence on the results observed’’.

Another well-known problem of the wrapper approach is that
they are prone to overfitting problem. A general framework of a
wrapper method consists of start point selection, search strategy,
evaluation function, and halting criteria (Blum & Langley, 1997). Ta-
ble 3 summaries the characteristics of both filter and wrapper
approaches.

3.2. Genetic algorithm

Genetic algorithms (GAs) have been widely used to solve vari-
ous optimization problems (Goldberg, 1989; Grefenstette, 1986;
Holland, 1992). Mimicking the evolutionary processes in nature,
a GA algorithm typically starts from a set of solutions, either ran-
domly created or manually selected. This set of solutions is re-
ferred to as population, and every individual in the population is
referred to as a chromosome. Within every generation, a fitness
function should be used to evaluate the quality of every chromo-
some to determine the probability of it surviving to the next gen-
eration; usually, the chromosomes with larger fitness values have a
higher survival probability. In order to form a new group of popu-
lation, the population reproduction is done by using operations like
selection, crossover and mutation on the current population. This
reproduction goes through one generation to another, until it con-
verges on the individual generation with the most fitness values
for goal functions or the required number of generations was
reached. The optimal solution is then determined.
Several issues shall be considered when it comes to the design
of an effective GA; this includes the population size, genetic oper-
ators (selection, crossover and mutation), and the stopping criteria.
The size of the population has impacts on both the performance as
well as the efficiency of the GA, which is usually set from 30 to 200
(Srinivas & Patnaik, 1994). The reproduction of the current popula-
tion to the next generation starts with the chromosome selection.
Roulette wheel method and tournament method are two standard
methods to select those chromosomes that can survive to the next
generation from the current population (Bäck, 1996). All chromo-
somes that survive to the next generation are placed in a matting
pool for crossover and mutation.

The chromosomes are randomly selected in pairs from the mat-
ting pool for crossover. This probability is referred to as the cross-
over rate, which typically ranges from 0.5 to 1.0. Commonly used
crossover methods are single-point, two-point and uniform cross-
over (Srinivas & Patnaik, 1994). The newly crossed chromosomes
are then combined with the rest of the chromosomes to generate
a new population. Following the crossover, the mutation operator
produces small changes to the bit string by choosing a single bit
at random, then changing its value. The probability that a chromo-
some is mutated, or the mutation rate, ranges typically from 0.001
to 0.05. Commonly used mutation methods are point mutation,
polynomial mutation and uniform mutation. The condition with
which the evolution process stops is called the stopping criteria.
Commonly applied criteria can be either the convergence to a good
solution or a preset number of the evolution rounds.
3.3. SVM model

As a relatively new algorithm in machine learning, Support Vec-
tor Machine (SVM) was first developed by Boster, Guyon, and Vap-
nik, (1992) to provide better solutions than other traditional
classifiers such as neural networks. SVM belongs to the type of
maximal margin classifier, in which the classification problem
can be represented as an optimization process.

The basic procedure for applying SVM to a classification model
can be summarized as follows (Chen & Hsiao, 2008). First, the input
vector is mapped into a feature space, which is possible with a
higher dimension. Then, within the feature space, the approach
proceeds to seek an optimized division, i.e., to construct a hyper-
plane that separates two (or more) classes. The hyper-plane deter-
mined by a SVM is composed of a set of support vectors that are a
subset of training data used to define the boundary between two
classes. To find the optimal hyper-plane, the boundary margin be-
tween the two classes should be maximized.

As suggested by Vapnik (1999), SVM can be generalized well
even in high-dimensional spaces under small training sample con-
ditions, indicating a learning ability independent of the feature
space dimensionality. SVM seeks to minimize an upper bound of
the generalization error rather than minimizing the training error.
Using the structural risk minimization rule, the training of SVMs
always seeks a globally optimized solution and avoids over-fitting.
These characteristics make SVM a strong candidate to tackle the
challenging FDP problem. The SVM approach has been put into
several financial applications recently (Ding et al., 2008; Shin
et al., 2005; Wu et al., 2007).
4. HARC: the proposed wrapper algorithm based on the genetic
algorithm

Fig. 4 depicts the basic flows of the proposed HARC algorithm,
which consists of three major steps. In Step 1, ratios are clustered
by ratio categories as discussed in Section 2. This step reflects ex-
pert knowledge in financial domain over the years. Ratios classified



Fig. 4. The concepts of the proposed feature selection algorithm: HARC.

Fig. 5. The selection of representative ratios from a ratio category: an example.

1 In this paper, the Z score threshold is set to 1.04, which marks the correlation
level (P-value) of 30%.
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into the same category usually share common semantics in certain
aspect; for example, the current ratio and the acid test both reflect
the liquidity of a company.

In Step 2, ratios in the same category are pair-wisely examined
according to their correlation. Any two ratios with high correlation
are grouped into the same sub-category. Previous studies showed
that two features with high correlation in general do not mean
they are not complimentary (Guyon & Elisseeff, 2003). For two ra-
tios in the same sub-category, however, it is likely that no informa-
tion is gained by adding both of them into the feature set for two
reasons; first, they belong to the same ratio category thus they
are semantically correlated, and secondly, the high level of correla-
tion indicates that they are statistically correlated. Therefore, one
ratio from each sub-category is designated as the representative ra-
tio for the rest, and is added to the representative ratio set.
Fig. 5 demonstrates how the representative ratios are selected
using the Profitability ratio category as an example. Given a ratio
category, we first examine the correlation for each pair of ratios
in this category using t-test (Box, 1987). As shown in Fig. 5, a ver-
tex in the graph represents a ratio, and a solid arc connecting two
ratios if their t-test score exceeds the preset threshold.1 In this
example, an arc connecting the ratios [X28] (Operating Income after
Tax per Share) and [X30] (Pre-Tax Income per Share) implies that these
two ratios are highly correlated in statistical sense. Next, we find
connected components of the graph (or the sub-categories of the
ratio category) using an efficient algorithm from graph theory
(Hopcroft & Tarjan, 1973). In this example, ratios [X28] and [X30] form
a connected component; likewise, ratios [X32] and [X33] forms an-
other component. In the third step, we select a ratio from each con-
nected component to be the representative ratio of this sub-category.
In this paper, we pick the ratio with the highest connectivity and/or
with the highest prediction score to be the representative ratio of
this sub-category. For example, ratios [X28] and [X32] are each se-
lected as the representative of their own group. Other measures
for the selection of the representative ratio are possible. We discuss
this further in Section 6. Table 4 presents the pseudo codes of this
algorithm, named Identify_Representative_Ratios.

In the final step, a GA-based wrapper algorithm, GA-Wrapper, is
proposed to select the optimal ratio subset from the representative
ratio set. We present the design details of this algorithm since
these issues have profound impacts on the performance of this
GA-based algorithm as discussed in the previous section. The pseu-
do codes of GA_Wrapper and HARC is shown in Table 5 and Table 6,
respectively.

4.1. Chromosome coding and initial population

The traditional binary coding scheme is used in this algorithm.
The chromosome X is represented as X = {x1,x2, . . . ,xn} where xi = 1
if the ratio ri is selected and xi = 0 otherwise. The initial population



Table 4
The pseudo codes of the algorithm: Identify_Representative_Ratios.

Identify_Representative_Ratios (S,s)

Input: S the input ratio set
s the t-test threshold

Output: Srep = ; the set of the representative ratios from S
1. Initialize the graph G = (S,E) where the vertex set of G is the ratio set S

and let the edge set E = ;;
//Construct the graph G
2. for each pair (ri, rj) where ri, rj 2 S do
3. Compute the t-test score tij of (ri,rj);
4. if (tij is greater than s) then E = E

S
{(ri,rj)};

5. endif
6. endfor
7. Find the connected components {C1,C2, . . . ,CN} in G;
//Find the representative ratio for each connected component in this

category.
8. for i = 1 to N do
9. Find the ratio rij in Ci with the highest connectivity;
10. Srep = Srep

S
{rij};

11. endfor
12. return Srep;

Table 5
The pseudo code of genetic algorithm based wrapper for feature selection.

GA_Wrapper
Input: S Input ratio set d number d of iterations

c rate c of mutation b rate b of crossover
a size a of population

Output: S⁄ best solution
//Initialization
1. Generate a feasible solutions randomly;
2. Save them in the population Pop;
//Loop until the terminated condition
3. for i = 1 to d do
//Chromosome selection
4. for j = 1 to a do
5. Fitness Value = average Accuracy X � Standard Deviation X;
6. endfor
7. Delete the bad solutions in Pop;
8. Copy the good solutions in Pop to replace the bad solutions;
9. Save them in the population Pop;
//Crossover
10. number of crossover n = a /2;
11. for j = 1 to n do
12. randomly select two solutions X and X from Pop;
13. if random < b
14. Generate X and X by one-point crossover to X and X;
15. Save X and X to Pop;
16. endif
17. endfor
//Mutation
18. for j = 1 to n do
19. Select a solution X from Pop2;
20. Mutate each bit of X under the rate c and generate a new solution X0;
21. Update X with X0 in Pop;
22. endfor
//Updating
23. endfor
//Returning the best solution
24. return the recommended ratio subset S⁄ based on the best subset X in

Pop;

Table 6
The pseudo codes of the HARC algorithm.

HARC Algorithm

Input: a size a of population b rate b of crossover
c rate c of mutation d number d of iterations

Output: s rate of t-test threshold
D(R1,R2, . . . ,RN) a training data set with N financial ratios
S⁄ = ; an optimal feature subset selected from D

//Step 1:Partition the input ratio set S into K ratio categories based on domain
knowledge

1. S =
Sk

i¼1Si;
2. Srep = ;;
//Step 2: Find the set of representative ratios, Srep, from S
3. for i = 1 to K do
4. Si

0 = Call Identify_Representative_Ratios(Si,s);
5. Srep = Srep

S
S0i;

6. endfor;
//Step 3: Search the optimal ratio subset, S⁄, from Srep

7. Call S⁄ = GA_Wrapper(Srep, a, b, c, d);
8. return S⁄;
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is generated randomly, and the size is set to 60 so that the conver-
gence time and the population divergence are kept balanced.

4.2. The fitness function

The average accuracy is used here in as the fitness value of the
chromosomes under consideration. The hold-out method is a typ-
ical cross-validation method to obtain the accuracy of the training.
After a few experimental tests, we set the hold-out number to 100,
the minimum number with which we can obtain a result with a
satisfactory confidence level.

4.3. Genetic operations

A standard tournament method is used to retrieve 30 pairs of
chromosomes, i.e., half the size of the current population. A uni-
form crossover is applied to create new chromosomes with the
possibility of 0.7. The mutation operation follows the crossover
operation, and uniform mutation is used in this study. Every chro-
mosome in the population should come with the possibility of
0.005 for mutation.

4.4. Stopping criteria

Within the evolution process, every round is arranged with 120
generations. The algorithm halts when it either reaches conver-
gence or all generations have completed.
5. Experiment framework and design

In order to validate the proposed ratio selection algorithm
HARC, we designed an experiment, which we will now discuss.
As depicted in Fig. 6, the experiment process is presented in three
parts: the data sampling, the financial ratios selected by HARC, and,
finally, the training and testing of underlying classifier used to
build the prediction model. The following is the detailed
discussion.

5.1. Sample variables

In this section, we present the experiment framework and de-
sign of our proposed model. A publicly listed firm is regarded to
encounter business crisis and turns into a distressed company
when declared for any one of the following conditions: full-value
delivery, stock transaction suspension, re-construction, bankruptcy
or withdrawal from the stock market. Based on the above criteria,
we selected 240 distressed and 240 non-distressed (as matched
samples) companies from TEJ database range year 2000 to 2008.
The matched samples (non-distressed) are selected via the strati-
fied random sampling (Altman, 1968).

For the variables, in addition, TEJ financial database for general
industry is divided into twelve categories: 1. Balance sheet
(60 + financial accounts such as total asset, total debt, etc.); 2. In-
come Statement (40 + financial accounts such as operating costs,



Fig. 6. The framework of the FDP prediction system based on the HARC algorithm.
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interest expense, etc.); 3. Earning distributions; 4. Cash flow state-
ment (50 + financial accounts such as depreciation, etc.); 5. Related
Party Sales; 6. Notes and supplementary; 7. Operating costs; 8.
Manufacturing expenses; 9. Operating expenses; 10. Retirement
pay; 11. Warrant and employee cost; and 12. Financial ratios.
The total number of features in 12 categories is more than 500
items, some features are from financial statements, some features
are calculate from well-known financial ratios, and some features
are defined by experts in data collecting, economy analysis, and
computer science. We choose Financial Ratios category as our
experiment feature set. We used 44 ratios (see Table 2) as experi-
ment variables.

We collect data which was one to three years before the year
when the financial distresses took place in order to analyze the
prediction accuracy multiple years ahead (Ding et al., 2008). Some
of the financial data are missing for a given company in the TEJ
database. This makes our matched-pair companies less than we
actually planned for. We collected 1260 instances of companies;
only valid instances are used for experiments as show in Table 7.

5.2. Selection of the SVM kernel and parameters

As discussed in Section 3.3, SVM-based prediction models per-
form well for problems with high-dimensional spaces under small
training sample condition. In this paper, we use LIBSVM 2.9 (Chang
Table 7
The instance number used in 1 to 3 years-ahead forecasts.

Number of distressed
firms

Number of non-distressed
firms

1-Year-ahead 231 231
2-Year-ahead 229 229
3-Year-ahead 228 228
& Lin, 2011), to build our SVM-based verification model. The selec-
tion of kernel and the corresponding parameters plays a crucial
role in the prediction quality of the SVM-based models. However,
there is no general guideline for this selection process. In general,
the radial basis function (RBF) is suggested for SVM. Here, we
use RBF as the SVM kernel function that can determine an optimal
hyper-plane for classifying two classes of data. Using RBF as a SVM
kernel function, users have to set parameters C and gamma for
optimizing a verification (prediction) model. To find optimal
parameters, we use particle swarm optimization (PSO) (Kennedy
& Eberhart, 1995; Kennedy, Kennedy, & Eberhart, 2001) since it
can simply and rapidly find an optimal C and gamma in a continu-
ous scope.
5.3. Ratios selected by HARC

Seventeen ratios are selected by HARC from 44 ratios listed in
Table 2. As shown in Table 8, the selected ratios are somewhat uni-
formly distributed over the seven categories within which Profit-
ability and Growth categories have more ratios been selected
than others. We analyze the profile of these ratios with their
means, standard deviations, and differences. The analysis is further
tested via P-value analysis of their statistical significance. The re-
sults are shown in Table 8.

From Table 8, it is clear that the selected ratios have significant
differences between the distressed firms and non-distressed firms
in terms of the mean values and standard deviations. The lower the
standard deviation, the higher stability is in ratios (or there will be
less fluctuation). Taking the profitability ratio [X32] (operating in-
come before tax/total assets) as an example, the non-distressed
firms’ mean value is 6.91, which is significantly different from
the mean value (�6.92) of the distressed firms. The difference of
selected ratios between the distressed firms and non-distressed
firms are all significant at the level of 5% except two ratios; i.e.,



Table 9
Financial Ratios used in the benchmark models.

Model Reference Ratios used

M1 Altman
(1968)

[X5][X9][X24][X31][X32]

M2 Beaver (1966) [X1][X5][X7][X19][X38][X42]
M3 Ohlson (1980) [X1][X5][X16][X22][X29][X38][X42][X43][X44]
M4 Stepwise

logistic
regression
(SLR)

[X8][X32][X42]

M5 Stepwise
discriminant
analysis (SDA)

[X8][X15][X16][X19][X23][X32][X33][X36][X38][X39][X42]

Table 8
Profile analysis of the feature selected by the proposed algorithm HARC.

Features Firm type Difference T-test p-value
(p < 0.05)

Distressed firms Non-distressed firms

Variable Meaning Mean Std. dev. Mean Std. dev. Mean Std. dev.

Liquidity ratios
X1 Current ratio 1.32 � 102 1.73 � 102 2.33 � 102 2.19 � 102 1.01 � 102 4.63 � 101 5.9 � 10�8*

X2 Acid test 7.69 � 101 1.65 � 102 1.57 � 102 1.78 � 102 8.04 � 101 1.27 � 101 7.2 � 10�7*

X5 Working capital/total assets 2.25 � 10�2 2.12 � 10�1 2.24 � 10�1 2.2 � 10�1 2.02 � 10�1 7.19 � 10�3 1.4 � 10�21*

X6 Working capital/sales 2.66 � 10�1 1.91 3.95 � 10�1 7.02 � 10�1 1.29 � 10�1 �1.21 3.4 � 10�1*

X7 No-credit interval �5.84 5.54 � 101 �1.94 � 10�1 1.33 � 101 5.65 �4.21 � 101 1.3 � 10�1*

Solvency ratios
X8 Interest expenses/equity 2.1 � 102 5.76 � 102 4.69 � 101 6.25 � 101 �1.63 � 102 �5.14 � 102 2.9 � 10�5*

X9 Market value equity/book value of total debt 1.14 3.81 2.29 2.26 1.15 �1.56 9.4 � 10�5*

X11 Interest expense/revenue 5.24 4.2 � 102 �9.5 3.39 � 102 �1.47 � 101 �8.09 � 101 6.78 � 10�1

Growth ratios
X13 Total assets growth �7.6 2.32 � 101 1.14 � 101 3.12 � 101 1.9 � 101 8 6 � 10�13*

Cash flow ratios
X18 Cash flow/total assets �1.8�10�2 8.47 � 10�2 1.02 � 10�2 7.77 � 10�2 2.8 � 10�2 �7 � 10�3 2.4 � 10�4*

X19 Cash flow/total liabilities �8.8 � 10�2 7.28 � 10�1 3.81 � 10�2 3.73 � 10�1 1.26 � 10�1 �3.6 � 10�1 1.9 � 10�2*

X20 Cash flow/equity �9.4 � 10�2 4.89 � 10�1 1.6 � 10�2 1.29 � 10�1 1.1 � 10�1 �3.6 � 10�1 1.1 � 10�3*

X21 Cash re-investment ratio �5.04 3.57 � 101 3.65 1.68 � 101 8.69 �1.89 � 101 9.1 � 10�4*

Operational ratios
X24 Total assets turnover 6.93 � 10�1 5.75 � 10�1 8.8 � 10�1 6.37 � 10�1 1.87 � 10�1 6.2 � 10�2 1 � 10�3*

Profitability ratios
X28 Operating income after tax per share �2.3 2.77 1.01 2.97 3.31 2 � 10�1 1 � 10�30*

X31 Retained earnings/total assets �2.3 � 10�1 3.1 � 10�1 1.35 � 10�2 2.29 � 10�1 2.39 � 10�1 �8.2 � 10�2 3 � 10�19*

X32 Operating income before tax/total assets �6.92 1.47 � 101 6.91 1.19 � 101 1.38 � 101 �2.8 1.5 � 10�25*

X34 Operation income per employee �6.39 � 102 1.82 � 103 9.67 � 102 3.45 � 103 1.61 � 103 1.63 � 103 1.09 � 10�9*

X35 Gross profit/net sales 8.13 1.88 � 101 1.92 � 101 1.82 � 101 1.11 � 101 �5.5 � 10�1 2.76 � 10�10*

X39 Net Income/equity �1.1 4.83 1.56 � 10�2 2.79 � 10�1 1.11 �4.56 5.85 � 10�4*

Capital structure ratios
X42 Liabilities/total assets 6.05 � 101 1.66 � 101 3.96 � 101 1.66 � 101 �2.09 � 101 2.64 � 10�4 1.8 � 10�35*

Other ratios
X44 Size 3.06 � 101 8.5 � 101 2.75 � 101 6.75 � 101 �3.1 �1.75 � 101 6.64 � 10�1

⁄ Significant at the level of 5%.

Table 10
Statistics of prediction accuracies of different models.

M1

(Altman)
(%)

M2

(Beaver)
(%)

M3

(Ohlson)
(%)

M4

(SLR)
(%)

M5

(SDA)
(%)

M6

(HARC)
(%)

Minimum 65.22 69.57 67.39 69.57 69.57 75.00
Maximum 83.70 88.04 86.96 88.04 93.48 92.39
Mean 75.34 79.68 79.37 79.96 80.04 81.36
Median 75.00 79.35 79.35 80.43 80.43 81.52
S.D 3.89 3.43 3.85 4.12 4.09 3.23

Table 11
Statistics of the Type I error rate of different models.

M1 (%) M2 (%) M3 (%) M4 (%) M5 (%) M6 (%)

Minimum 10.87 8.70 6.52 6.52 4.35 6.52
Maximum 43.48 32.61 36.96 39.13 36.96 34.78
Mean 25.86 20.14 22.01 19.61 21.52 19.26
Median 26.09 19.57 21.74 19.57 21.74 19.57
S.D 6.57 4.54 6.09 5.52 5.92 5.59

Table 12
Performance summary of various models.

M1 (%) M2 (%) M3 (%) M4 (%) M5 (%) M6 (%)

Type I 25.86 20.14 22.01 19.61 21.52 19.26
Type II 23.41 20.48 19.13 20.48 18.39 16.63
Brier Score (BS) 24.64 20.32 20.63 20.04 19.96 18.64
Accuracy 75.34 79.68 79.37 79.96 80.04 81.36
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[X11] (interest expense/revenue) and [X44] (Size). It is interesting to
notice that these two ratios are selected by HARC but not by other
traditional feature selection approaches such as stepwise logistic
regression and discriminant analysis.
6. Experiment results and discussion

6.1. Performance of HARC

To verify the effectiveness of the proposed method, models
based on prior scholars as well as known feature selection algo-
rithms are used as benchmarks for comparison. Model 1 (M1) to
Model 3 (M3) is based on the ratio set proposed by Altman
(1968), Beaver (1966) and Ohlson (1980), respectively; whereas



Table 13
McNemar value (P-value) for pairwise comparison of the average accuracy, Type I and Type II errors.

M6 M1 M2 M3 M4 M5

Accuracy 5.47 � 10�24** 1.45 � 10�3** 1.06 � 10�4** 8.04 � 10�3** 1.25 � 10�2*

Type I 2.1 � 10�12** 2.53 � 10�1 7.65 � 10�4** 6.58 � 10�1 5.99 � 10�3**

Type II 3.06 � 10�11** 1.78 � 10�3** 1.34 � 10�1 2.39 � 10�3** 6.2 � 10�1

* Significant at the level of 5%.
** Significant at the level of 1%.

Table 14
Statistics of predictive accuracies of various classifiers.

Statistical indices SVM (%) Logit (%) MDA (%) KNN (%)

Minimum 75.00 71.74 72.83 68.48
Maximum 92.39 86.96 86.96 86.96
Mean 81.36 80.36 80.04 79.47
Median 81.52 80.43 80.43 80.43
S.D. 3.23 3.61 3.45 4.27

Table 15
McNemar value (P-value) of accuracy comparison for pairwise models.

SVM Logit MDA KNN

SVM X 4.05 � 10�2* 5.91 � 10�3** 5.18 � 10�4**

Logit X 5.29 � 10�1 1.13 � 10�1

MDA X 2.95 � 10�1

KNN X

*
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Model 4 (M4) and 5 (M5) are based on the feature selection results
of stepwise logistic regression (SLR) and stepwise discriminant
analysis (SDA). Table 9 summarizes the ratios adopted in these
models. Model M6 is based exclusively on the proposed algorithm,
HARC. To assess the predictive performance more precisely, we ap-
ply the 100 times hold-out method in this study. For each time of a
hold-out, 80% of the whole data samples are used for training, and
the remaining 20% are used for testing. Secondly, the comparisons
of the prediction results between models M1 to M6 are made by
conducting the same SVM.

Different types of errors result in different penalty costs. As pre-
sented earlier, 240 distressed firms in the years of 2000–2008 are
analyzed against 240 non-distressed counterparts. We first com-
pare the prediction accuracy of the six models using the financial
data one year prior to the distressed year of the firm in distress.
This prediction is also known as the 1-year-ahead forecast (Ding
et al., 2008).

Tables 10–12 give full statistics of the performance metrics. The
model based on HARC (M6) outperforms all other models in all ac-
counts. The mean accuracies of the six models range from 75.34%
to 81.36%. The standard deviations fall in the range of 3.23% to
4.12%. As summarized in Table 10, the average accuracy of the 1-
year-ahead forecast of M6 is 81.36%, superior to those of M1

(75.34%), M2 (79.68%), M3 (79.37%), M4 (79.96%), and M5 (80.04%).
M6 also yields lower average Brier Score2 (BS) of 18.64%, Type I error
rate (19.26%) and Type II error rate (16.63%) than other models as
shown in Table 12. The superiority of M6 is further confirmed after
we run a series of McNemar3 to compare M6 against other 5 models,
as shown in Table 13. M6 yields better performance than other mod-
els at the significance level of 5% or better, except the Type I errors of
M4. Regarding the average accuracy, in particular, the performance
improvement of M6 over other models is significant at an impressive
level of 1%.

Taking a closer look at Table 13, we find that either M4 or M5

performs better than M1, but comparable to M2 and M3. It seems
to suggest that, for a given FDP problem, it is wiser to find proper
ratio set by using feature selection methods such as SLR than to
adopt directly ratio sets reported in the literature. Compared with
other models, on the other hand, model M1 seems to have lowest
mean value and highest standard deviation. However, her Type I
error occurs with a less frequency than most models. In actual
practice, the cost of misclassifying a failed firm into a healthy
one (Type I error) is likely to be much greater than that of misclas-
sifying a healthy firm into a failed one (Type II error). As indicated
above, the Type I error rate of M4 is the second best next to the pro-
posed model M6, and is much lower than that of other models.
2 The Brier Score (BS) is a measure of prediction accuracy well-known in
meteorology and medical science. It is formulated as BS ¼ 1

n

Pn
i ðhi � piÞ

21Þ
h i

where
hi is a binary indicator for the actual realization of the default variable (1 if default, 0 if
no default) and pi, is the estimated probability of default. The difference between the
Brier Score and the percentage of correctly classified observations is that the former is
more sensitive to the level of the estimated probabilities. The Brier Score takes the
estimated probabilities directly into account.

3 McNemar test is useful for detecting before–after measurement of the same
subject as a nonparametric test for two related samples using the chi-square.
Empirical results indicate that M4 can serve as a promising alterna-
tive for existing financial distress prediction models.

6.2. Performance comparison of SVM model against models based on
various classifiers

For benchmark purpose, we conducted experiments with Logit,
MDA and RBFN models as their SVM counterparts. These models
are all built with the same feature set (shown in Table 9) used in
M6. Table 14 indicates the statistical description results. The stan-
dard deviations of the models are between 3.23% and 4.27%.

The RBFN, MDA and Logit models consistently fall short of their
SVM counterpart at the significance level of 5% or above as summa-
rized in Table 14. For example, SVM yields 81.36% accuracy that is
the highest accuracy rate among her peers.

Moreover, we conduct McNemar test to assess the significance
of the difference between different models. As shown in Table 15,
the SVM model is superior to other models at the significant level
of 5% or above, yet there is no significant difference between the
model Logit, MDA and KNN.

6.3. The analysis of predictive accuracy for longer-term forecast

We conduct additional experiments to observe the effect of the
prediction capability of models M1–M6 for longer term forecasts.
Table 16 shows the results of applying these models from 1-
year-ahead forecast to 3-year-ahead prediction. For example, M6
Significant at the level of 5%.
** Significant at the level of 1%.

Table 16
The 1-year ahead to 3-year ahead forecasts by all models.

M1 (%) M2 (%) M3 (%) M4 (%) M5 (%) M6 (%)

1-Year-ahead forecast 75.34 79.68 79.37 79.96 80.04 81.36
2-Year-ahead forecast 70.26 73.02 73.52 73.89 73.96 75.13
3-Year-ahead forecast 63.43 66.51 64.88 67.07 67.91 66.78



Table 17
McNemar value of multiple-year-ahead forecasts.

Accuracy

M6 M1 M2 M3 M4 M5

1-Year-ahead 5.47 � 10�24‘** 1.45 � 10�3** 1.06 � 10�4** 8.04 � 10�3 1.25 � 10�2*

2-Year-ahead 1.18 � 10�14** 4.9 � 10�4** 3.64 � 10�3** 3.69 � 10�2* 4.8 � 10�2*

3-Year-ahead 4.55 � 10�10** 6.61 � 10�1 2 � 10�3** 5.88 � 10�1* 4.9 � 10�2*

* Significant at the level of 5%.
** Significant at the level of 1%.

Table 18
The distribution of financial ratios adopted in various models.

M1 M2 M3 M4 M5 M6

Liquidity ratios 1 3 2 0 0 5
Solvency ratios 1 0 0 1 1 3
Operational ratios 1 0 0 0 2 1
Cash flow ratios 0 1 1 0 1 4
Growth ratios 0 0 1 0 1 1
Profitability ratios 2 1 2 1 5 6
Capital structure ratios 0 1 2 1 1 1
Other ratios 0 0 1 0 0 1
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sustains an accuracy of 75.13% for 2-year-ahead forecast and
66.78% for 3-year-ahead forecast. The proposed M6 outperforms
other models for 1-year-ahead forecasts and 2-year-ahead
forecasts. Table 17 shows that M6 outperforms M5 and M6 at the
significant level of 5%, and M3, M2, M1 at the level of 1%.

Models M4 and M5 perform slightly better than M2 and M3 for
both 1-year-ahead and 2-year-ahead forecasts. For 3-year-ahead
forecasts, M5 outperform other models and M6 performs roughly
the same as M2 and M4. M1 remains the least accurate in any-
year-ahead forecasts.

Extending the data period of financial variables from one to
three years reduces the accuracy rate of all models, as reported
in other studies (Altman, 1968; Ohlson, 1980; Wu et al., 2007). This
implies that the most recent year’s financial data plays the major
role in financial prediction. However, the mixed effect that multi-
year data has on financial prediction models requires further study.
7. Discussion

We observe about all the models built with the HARC feature
set performs better than M1 to M5 expect KNN model. This result
indicates that the feature set recommended by HARC is consis-
tently superior to feature sets selected by other approaches.
Table 18 summarizes the number of ratios selected by each model
(M1 to M6) in each ratio category. It appears that the ratios selected
by HARC cover all 8 categories. The number of ratios selected from
these categories by HARC range from one to five. This suggests that
each ratio category provides useful information in certain aspect of
the distress prediction. Omitting any category may cause negative
impact on the predictive power of that model.

It seems that the ratios from categories solvency, probability
and capital structure are effective since ratios from these catego-
ries all appear in the selected feature sets of M4, M5 and M6. The ra-
tios [X8] (interest expenses/equity) are all recommended in M4, M5,
and M6, but none of the ratios in this category is included in either
M2 or M3. M1 uses [X9] (market value equity/book value of total
debt), which is a solvency ratio. It appears [X8] is a more effective
indicator than [X9] as the experiment results suggests. All models
select some ratios from the probability category. However, [X32]
(operating income before tax/total assets) are included in M1, M4,
M5 and M6, whereas [X38] are included in M2, M3 and M5. We notice
that [X32] and [X38] are somewhat homogeneous. Semantically, the
experiment results seem to indicate that the former one is more
effective as far as the Taiwan dataset is concerned.

All models select at least one ratio from the capital structure
category except M1. These models all select [X42] (liabilities/total
assets) in their feature subsets. It seems to suggest [X42] is the most
effective ratio in this category.

Finally, we find that the cash flow ratios and the growth ratios
are omitted from M1 and M4, but are included in M3, M5, and M6. It
appears that these two categories play mixed roles in predicting
distressed Taiwanese firms, since M1 is the least accurate model,
while M4 and M6 are the more accurate models.
8. Conclusion

In this study, we propose an integrated approach to feature
selection for the FDP problem that embeds expert knowledge with
the wrapper method. We categorize the financial features into se-
ven classes according to their financial semantics based on experts’
domain knowledge from literature. Ratios in the same category are
pair-wisely examined according to their correlation. Any two ratios
with high correlation are grouped into the same sub-category. Only
one ratio from the same sub-category is chosen to enter the next
round of selection because these ratios are highly correlated not
only in statistical sense but also in semantic sense. We then apply
the wrapper method to search for ‘‘good’’ feature subsets consist-
ing of top candidates from the remaining ratios in each ratio cate-
gory. The search space of the wrapper method therefore effectively
shrinks because features have been ‘‘filtered’’ before the wrapper
method is applied. We conducted the case studies of listed compa-
nies in Taiwan’s Stock Exchanges. This empirical study shows that
the proposed integrated method significantly outperforms the
existing feature selection approaches commonly found in litera-
ture. This study also shows that HARC is able to recommend a ratio
subset that is more evenly distributed over all ratio categories than
other methods. The two-step selection approach makes HARC an
algorithm with both efficiency and performance.

In the current setting of HARC, the threshold of the t-test is set
to 1.04, which is rather ad hoc. We plan to look for a more rigorous
way to find the optimal threshold value so that the performance
can be enhanced. Some of practitioners and scholars have sug-
gested that a ratio may be classified into more than one category.
We are interested in studying the effect on the HARC’s perfor-
mance if the current one-category constraint is lifted in the future.
This study has conducted a case study using a public dataset that
collects listed Taiwanese companies from the year of 2000 to
2008. We plan to perform more experiments with different open
datasets to strengthen our conclusion on the performance of HARC.
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