
Computer Standards & Interfaces 36 (2013) 209–218

Contents lists available at ScienceDirect

Computer Standards & Interfaces

j ourna l homepage: www.e lsev ie r .com/ locate /cs i
A portable interceptor mechanism for SOAP frameworks

Chien-Cheng Lin a,d, Chen-Liang Fang b, Deron Liang c,d,⁎
a Department of Computer Science and Engineering, National Taiwan Ocean University, Keelung, Taiwan, R.O.C.
b Department of Information Management, Jinwen University of Science and Technology, Taipei, Taiwan, R.O.C.
c Department of Computer Science and Information Engineering, National Central University, Taoyuan, Taiwan, R.O.C.
d Software Research Center, National Central University, Taoyuan, Taiwan, R.O.C.
⁎ Corresponding author. Tel.: +886 3 4227151x3520
E-mail address: drliang@csie.ncu.edu.tw (D. Liang).

0920-5489/$ – see front matter © 2013 Elsevier B.V. All
http://dx.doi.org/10.1016/j.csi.2013.04.001
a b s t r a c t
a r t i c l e i n f o
Article history:
Received 31 May 2010
Received in revised form 11 December 2012
Accepted 4 April 2013
Available online 25 April 2013

Keywords:
SOAP framework
Web Service
Portable interceptor mechanism
ISO/IEC 9126
An interceptor is a generic architecture pattern, and has been used to resolve specific issues in a number of
application domains. Many standard platforms such as CORBA also provide interception interfaces so that
an interceptor developed for a specific application can become portable across systems running on the
same platform. SOAP frameworks are commonly used platforms to build Web Services. However, there is
no standard way to build interceptors portable across current SOAP frameworks, although, some of them pro-
vide proprietary interceptor solution within individual framework, such as Axis, XFire, and etc. In this paper,
we propose the portable interceptor mechanism (PIM) consisting of a set of application programming inter-
faces (API) on SOAP engine, a core component of a SOAP framework. An interceptor is able to receive
messages passing through the SOAP framework from the SOAP engine via these APIs. Furthermore, the pro-
posed PIM facilitates run-time lifecycle management of interceptors that is a crucial feature to many
application domains but is not fully supported by CORBA standard. For concept proving, we implement the
proposed PIM on two popular SOAP frameworks, namely, Axis and XFire. We also discuss a number of imple-
mentation issues including the performance and reliability of PIM.

© 2013 Elsevier B.V. All rights reserved.
1. Introduction

An interceptor is a generic architecture pattern, and has been used
to resolve specific issues in a number of application domains, such as
continuous audit (CA), computer forensics (CF), fault tolerance (FT),
load balancing (LB), and quality of service (QoS) systems. In the Con-
tinuous Process Auditing System (CPAS), an auditing module has
been added to the original framework to intercept and log transac-
tions so that the system's audit trail can function in a continuous
manner [19]. Rezaee et al. suggested embedding an auditing module
in a transaction system to monitor the system's activities continuous-
ly so that fraud could be detected in real-time [28]. Jailani et al. imple-
ment agent-based mechanism (i.e. AENA) to monitor and to record
the activities related to transactions for auditing purpose [17]. For
computer forensics applications, Sommer proposed using an intru-
sion detection system (IDS) to intercept and log system activities as
digital evidence sources [32]. Song's dSniff program also employs
the interception approach in computer forensics auditing [31]. Patel
further mentions that an interception mechanism could be used
to track users and their behavior for forensics purpose [27]. For
fault-tolerance software applications, DOORS applies the interception
approach to achieve fault transparency [22]; and Enternal uses in-
terceptors for group communications in an active replication FT sys-
tem [21]. Liang's work on fault tolerant Web Services shows that an
8; fax: +886 3 4227151.

rights reserved.
interceptor mechanism is needed to solve logging, client fault transpar-
ency, and redundant nested invocation problems in fault tolerant sys-
tems [9,20]. Arpaia et al. develop a fault detection subsystem, which
also use interception mechanism to extract relevant fault information
[2]. For load balancing applications, Cao et al. and Hallstrom et al.
implemented an interceptor in their agent-based resource manage-
ment system to intercept user requests and distribute the load fairly
over all grid servers [6,13]; while Othman et al. used a client-side inter-
ceptor to intercept and then forward requests for load balancing pur-
poses [26]. In the QoS domain, Artaiam and Senivongse use an
interception mechanism as a wrapper to monitor the system resources
[3]; while Zeng et al. use the Self-Serv system as a wrapper to intercept
messages [43]. Helali et al. use a middleware as a wrapper to perform
QoS monitoring and managing [14].

Web Service is an increasingly recognized technology for building
distributed applications where Simple Object Access Protocol (SOAP)
[36,38] is one of the most commonly used means of implementation.
Since interceptors have been widely used in various applications, we
believe that Web Services would have greater applicability in various
application domains if there were an interceptor mechanism for SOAP
frameworks. Currently, two approaches are available for obtaining the
messages flowing in and out of SOAP frameworks: the intermediary
mechanism supported by the SOAP 1.2 [38] standard and proprietary
interception supported by individual SOAP framework vendors
[1,7,18]. The intermediary mechanism is operated as a midpoint proxy
(or an intermediary node) and can be used to re-route and to pre-
process messages between client and server nodes. Many applications

http://dx.doi.org/10.1016/j.csi.2013.04.001
mailto:drliang@csie.ncu.edu.tw
http://dx.doi.org/10.1016/j.csi.2013.04.001
http://www.sciencedirect.com/science/journal/09205489
http://crossmark.crossref.org/dialog/?doi=10.1016/j.csi.2013.04.001&domain=pdf


210 C.-C. Lin et al. / Computer Standards & Interfaces 36 (2013) 209–218
such as CA, CF, and FT require information interception at endpoints –
either client-side or server-side – and some of them even require mes-
sage interception at both endpoints, such as QoS. The intermediary
mechanism, however, does not quite meet the requirements of these
applications (further discussion can be found in Section 5.1). In contrast
to the protocol layer approach as the intermediary mechanism, some
SOAP frameworks, such as Apache Axis [1] and Codehaus XFire [7], pro-
vide proprietary application programming interfaces (APIs) on their
SOAP engines with which an application developer is able to plug in
application specific interceptors to obtain messages from the SOAP en-
gines as they pass through. One of the drawbacks to taking this
approach is the portability, i.e., an interceptor developed for Axis re-
quires some effort to be ported to XFire, and vice versa. One possible
way to resolve these issues is through an application platform (OS/
middleware) that provides an interceptormechanismwith standard in-
terfaces, such as the Common Object Request Broker Architecture's
(CORBA's) portable interceptor (PI) [25] at the middleware layer and
dSniff [31] at the network layer. However, CORBA PI falls short of
lifecycle management at run-time (discussed in Section 5.2), which is
a crucial functionality for applications such as continuous assurance
and load balancing. These applications often need this managerial func-
tion to dynamically reconfigure their inner states without perturbing
the operations on the original systems. We, therefore, propose a set of
standard interfaces, called the portable interceptor mechanism (PIM),
for SOAP engines that address the above issues. Notice that this work
is based on our previous work [10].1

The research methodology of this paper is threefold. First, we de-
termine the requirements of a portable interceptor mechanism (PIM)
based on the specifications of several major application domains,
such as the CA, CF, FT, LB, and QoS systems, and categorize them by
using ISO/IEC 9126 [15]. Second, based on the requirements, we de-
sign two PIM interfaces: an interceptor management mechanism
(IM) interface and a portable interceptor (PI) interface. The IM inter-
face, which CORBA does not provide, allows interceptor administra-
tors to manage the lifecycle of interceptors at run-time and also
facilitates the interception of messages. The proposed PI interface
can be used by developers to implement their own interceptors. Fi-
nally, we analyze the feasibility of applying the proposed PIM via a
proof of concept. Specifically, we implement two prototypes and eval-
uate them based on the determined requirements.

The remainder of this paper is organized as follows. In Section 2,
we define four PIM requirements based on the specifications of sever-
al major application domains and categorize them by ISO/IEC 9126
[15]. In Section 3, we analyze the PIM's features via a number of use
cases and discuss the proposed PIM interfaces in detail. We investi-
gate the feasibility of applying the PIM via a proof of concept in
Section 4; and discuss two alternative approaches, namely, SOAP in-
termediary [38] and CORBA PI [25] in Section 5. We then summarize
our findings in Section 6.

2. Determining PIM requirements

To design an effective portable interceptor mechanism (PIM), we
must first determine the PIM requirements. We therefore study
how interceptors are used in various application domains, such as
continuous auditing (CA), computer forensics (CF), fault tolerance
(FT), load balancing (LB), and Quality of Service (QoS) systems. To en-
sure that the requirements are addressed completely, we use ISO/IEC
9126 [15] to categorize them. ISO/IEC 9126, which is the evaluation
standard recommended by the International Organization for Stan-
dardization, is used to assess the quality of an information system
based on six quality factors, namely, functionality, usability, reliabili-
ty, portability, maintainability, and efficiency. In the following, we
1 The major extension to [10] includes the requirement analysis via ISO/IEC 9126
and the implementation validation of the proposed PIM.
define four PIM requirements and categorize them based on the
above quality factors.

2.1. Functionality and portability

The interceptor approach, which is used to intercept messages ex-
changed between systems, is employed in many application domains.
For example, Woodroof et al. suggested that a CA monitoring mecha-
nism should be run in real time (or near real time) in order to track
the necessary audit trail [41], while Sommer considered that a continu-
ous logging system at both client and server sites is necessary for live fo-
rensic purposes [32]. Gunestas et al. used handlers to implement the
Forensic Web Services (FWSs) framework for computer forensic do-
main [12]. Liang et al. proposed a fault-tolerant logging mechanism to
continuously record all service invocations and messages for use in re-
covery operations [20]; while Felber and Narasimhan noted that the in-
terceptor approach is one way to implement fault-tolerant systems
[11]. The interception approach is also used to monitor system re-
sources and intercept messages in the QoS domain [3,43]. Furthermore,
most of these applications require information/message interception si-
multaneously at both client and server sites. Therefore, based on the
above observations we define the first system requirement for the pro-
posed PIM:

R1 A PIM should facilitate interaction between the interceptor and
the SOAP engine so that designated interceptors can process
SOAP messages, request messages and response messages
that pass through the SOAP engines at the client and server
sites continuously.

Based on our review of the literature, we believe that, although
many application domains adopt the interceptor approach, it would
be more useful if each interceptor could adapt to different domains
and/or frameworks. For example, an interceptor implemented to re-
solve a fault tolerance issue could also be adapted to another frame-
work applied by the CA mechanism. Therefore, we define the
second system requirement:

R2 A PIM should provide a standard interface for the portability of
interceptors.

2.2. Usability

Many application domains that employ an interceptor approach
require a management mechanism for their interceptors. For exam-
ple, Vasarhelyi et al. suggested that a CA monitoring mechanism
should be easy for auditors with a limited IT background to use [34].
To be effective, the monitoring mechanism should allow auditors to
work independently, i.e., as tertiary monitors [39]. Cao et al. proposed
an agent-based load balance solution with strong management fea-
tures to address various managerial needs [6]; while Artaiam and
Senivongse use the management UI to manage the lifecycle of moni-
toring agents [3]. We found that the lifecycle management of the por-
table interceptor (PI) is an important issue for users.

We also found that, if necessary, it should be possible to reconfigure
the interceptors without interrupting normal operations. For example,
Whittington and Pany [39] suggested that an ideal continuousmonitor-
ingmechanism should be able to adjust in secondswithout help from IT
professionals [39]; while Othman et al. [26] suggested that a load
balancing (LB) mechanism should be able to adapt rapidly to various
load conditions [26]. Other studies also observe that there is a need to
adjust the properties of an interceptor at run time to meet changing
monitoring conditions [13]; and QoS Services need to adjust the param-
eters of the monitoring agents at run-time [3]. Therefore, we define the
third system requirement:

R3 A PIM should enable administrators to manage interceptors
throughout their lifecycles; in particular, a PIM should allow



211C.-C. Lin et al. / Computer Standards & Interfaces 36 (2013) 209–218
the administrators to reconfigure existing interceptors without
interrupting the normal operations of any Web services run-
ning on the SOAP engine.

2.3. Reliability and efficiency

Reliability and efficiency, which are general requirements of appli-
cation systems, are design and implementation issues. A number of
researchers have considered these issues. For example, Artaia and
Senivongse [3], Doughty et al. [8] and Rowlingson [29] emphasized
that the failure of a CA monitoring mechanism should not affect the
system in which it resides. Hence, our last system requirement is as
follows:

R4 The operations of the interceptors and the PIM should have
minimum impact on the normal operations of Web services.

2.4. Maintainability

Maintainability means “the capability of the software product to
be modified [15].” Thus, a software component is maintainable if
some parts of it can be reconfigured and reused. We consider that
the proposed PIM is maintainable because the interceptors' lifecycles
are manageable, which satisfies requirement R3.

2.5. Summary of PIM requirements

We have defined four PIM requirements based on the specifica-
tions of five application domains. Requirement R1 defines the basic
functionality of the interceptors while R2 considers their portability.
R3 stipulates that the PIM must be able to manage the interceptors'
lifecycles, and requires that it can acquire and set the properties of
the interceptor without interrupting the system's normal operations.
Especially, R3 is useful in application domains when the systems have
to adjust the internal parameters or the functions of the PI without
interrupting any of the services of the systems. For example, a
company's information system may have different business flows. If
auditors want to check all the transaction flows (e.g., purchase
flows and sales flows) individually at run-time, they must be able to
change the auditing rules without stopping the system. Therefore,
Fig. 1. Interceptor managemen
the PIM would be able to be applied to various domains, such as CA,
CF, FT, LB, and QoS systems. Finally, requirement R4 relates to the im-
pact on a modified SOAP engine if the installed PIM and/or the
plugged interceptors malfunction or crash. These problems could be
avoided by implementing certain technologies, which we discuss in
Section 4. The above four requirements cover the six quality factors
of an information system defined in the ISO/IEC 9126 standard. We
believe that the proposed PIM offers sufficient functionality to build
interceptors for other applications.

3. Interface design for the portable interceptor mechanism

A recognized way to achieve portability of application specific in-
terceptors is through the use of common interfaces [30]. In Fig. 1,
steps 1–4 illustrate how the PIM's administration tool (PAT) manages
the interceptors' lifecycles (R3). Fig. 2 shows that exchanged mes-
sages can be intercepted at four points (R1) after interceptors have
been installed in an information system. The portable interceptors,
which are usually custom-made components, can be implemented
by inheriting the designed interfaces. Next, we discuss the functional-
ity offered by these two sets of interfaces through use case analysis.

3.1. Use case analysis

3.1.1. Managing an interceptor's lifecycle
To explain the management of an interceptor's lifecycle, we con-

sider a use case in the CA domain. Suppose an auditor uses PIM's ad-
ministration tool (PAT) to manage an auditing mechanism that is
implemented as an interceptor, as shown in Fig. 1. The tool invokes
a plug-in service call in the auditee's SOAP engine, which then finds
the location (or URI) of the pluggable auditing mechanism (the inter-
ceptor) and connects to (or plugs into) the SOAP engine, as shown in
the step 1 of Fig. 1. After plugging in the interceptor, the auditor sets
the interceptor's initial auditing parameters, as shown in step 2, and
then activates the interceptor via the same PIM administration tool,
as shown in the step 3. The administrator can suspend the interceptor's
functions by invoking a deactivation function in the SOAP engine, as
shown in step 4. The auditor can also alter the run-time auditing options
via the SOAP engine service component after the interceptor has been
plugged in.
t in a Web Services server.



Fig. 2. The four interception points of an interceptor.

212 C.-C. Lin et al. / Computer Standards & Interfaces 36 (2013) 209–218
3.1.2. Run-time phase of an interceptor
An interceptor can be implemented on the server-side and/or

client-side based on the application domain's need; therefore, we con-
sider two use cases to explain its applications. Fig. 2(a) shows how a
client-side interceptor is used for load balancing. The Web Service's
client-side interceptor intercepts and redirects outgoing requests
to the best target replica (interception point A), and processes the
reply message (interception point B) when the Web Service responds.
Fig. 2(b) illustrates a use case of a server-side interceptor for a CF appli-
cation. The server-side CF interceptor intercepts arrival requests before
the Web Service deals with the request (interception point C) and/or
intercepts the response (interception point D) after the Web Service
sends a reply message to the client.

2(a)An LB client-side interceptor use case 2(b)A CF server-side in-
terceptor use case.

3.1.3. Summary of the use case analysis
The results of the use case analysis show that all the functions sat-

isfy requirements R1–R3 of the PIM. Since the interceptor is designed
to obtain SOAP messages at four points continuously, requirement R1
is fulfilled. An interceptor can be installed, uninstalled, activated, and
deactivated in a SOAP engine. Furthermore, PIM has a function called
setProperties() that allows an administrator to adjust the installed PI
without interrupting the normal operations of the system; therefore,
requirements R2 and R3 are also fulfilled. Requirement R4, which
pertains to the system's reliability and efficiency, is considered in
Section 4. Next, we discuss the design of the PIM interfaces.

3.2. Design of PIM interfaces

Based on the previous analysis, we divide the PIM interface into
two application programming interfaces (API). The first is the inter-
ceptor management mechanism (IM), which is used to manage the
interceptors' lifecycles at run-time. The second is the portable inter-
ceptor (PI), which ensures that the interceptors are portable and
manageable by the interceptor management mechanism. We discuss
the design of the management features in the SOAP engine first,
followed by the design of the interceptor.

3.2.1. Design of the interceptor management mechanism API
As shown in Fig. 3, the interceptormanagementmechanismhas five

functions, which enable Web Service system administrators to manage
the lifecycle of interceptors via the PIM. Specifically, the system admin-
istrator implements the administration application admAp to manage
all interceptors via the administration APIs. The five administrative
functions are: plugIn(), setProperties(), getProperties(), activate(), and
deactivate(). An interceptor is connected to (or plugged into) the
SOAP engine by using the plugIn(PI_name, PI_module) function. The ad-
vantage of plugIn() is that there are no interruptions to service during
installation because the function provides a non-stop PI installation
mechanism for critical Web services. The system administrator then in-
vokes the setProperties(PI_name, Properties) function in the SOAP engine
to set up the desired operating parameters, after which the PI is activat-
ed by calling the activate(PI_name) function in the SOAP engine. To
query the PI's operating parameters, the system administrator can in-
voke the getProperties(PI_name) function. To deactivate the installed
PI at a specific time, the administrator invokes the deactivate(PI_name)
function.

To apply the PIM in different application domains, it is important
to consider the data type (content) of the interface parameters. This
is because the information systems in different application domains
often use different data types (content) in the interface parameters
to set or acquire the system's attributes. If the PIM does not apply a
unified and flexible data type for the parameters, a portability prob-
lem will arise. We use a flexible data type, called Properties (written
in Java language) for the interface parameters. As Properties (shown
in line 5 of Fig. 7) can be used to transfer various types of data, our
PIM can be applied in different application domains.

Fig. 4 shows an excerpt from the interceptor manager interface in
WSDL [37] format; however, the format is not really suitable for pre-
sentation purposes. Fortunately, OMG provides a mapping specifica-
tion between OMG's IDL and WSDL [24], which allows us to convert
the PI manager into OMG IDL format. An excerpt from the interceptor
manager's interface in IDL format is shown Fig. 5. Hereafter, we use
OMG IDL to present the interface.

3.2.2. Design of the interceptor API
To design the interceptor API, we consider the results of the use case

analysis. Messages can be intercepted at four points in an information
system. Our interceptor interface is comprised of a basic interceptor, a
client-side interceptor, and a server-side interceptor, as shown in Fig. 6.
The basic interceptor interface, called the Interceptor, is described
in Lines 2 to 10 of Fig. 7. After the interceptor has been loaded in the ini-
tialization phase, the SOAP engine calls the Interceptor::initialize()
function (Line 3). The interceptor programmers may set up the neces-
sary running environment parameters for all desired purposes. The
Interceptor::destroy() function (Line 4) allows the SOAP engine to
clean up an unused interceptor for management purposes in the
terminal phase. The Interceptor::setPropoerties(PI_name,Properties) and
Interceptor::getPropoerties(PI_name) functions allow the administrator
to set additional properties and query the parameters' properties at

image of Fig.�2


Fig. 3. An example of the interceptor management module.

213C.-C. Lin et al. / Computer Standards & Interfaces 36 (2013) 209–218
run-time. When the IIManagerImpl::activate() function is invoked, the
SOAP engine calls Interceptor::activate() to activate the interceptor;
and when the IIManagerImpl::deactivate() function is invoked, the
Fig. 4. An excerpt from the interceptor manager's interface in WSDL format.
engine calls Interceptor::deactivate() to temporarily deactivate the in-
terceptor. The administration application performs these operations at
the request of the administrator.

Since the basic interceptor is inherited by the ClientInterceptor
and the ServerInterceptor, they also have the above basic features.
The ClientInterceptor is defined in Lines 16–19 of Fig. 7. The
ClientInterceptor::sendRequest(RequestInfo) function is invoked by
the SOAP engine before a client request is sent to the server. The
interceptor's programmers can implement their desired intercepting
code via this function. The ClientInterceptor::receiveReply(RequestInfo)
function is invoked by the SOAP engine after it receives a response
from the server so that the interceptor can check the response. The
proposed ServerInterceptor, defined in Lines 21–24 of Fig. 7, deter-
mines the two server-side interception points ServerInterceptor::
receiveRequest() and ServerInterceptor::sendReply(). The operation of
this interface is similar to that of ClientInterceptor.
4. Implementing the concept

We analyze the feasibility of applying the proposed PIM via a
proof of concept. Specifically, we implement two prototypes and eval-
uate them based on the determined requirements. We share the ex-
perience we gained from implementing the PIM prototype on two
open-source SOAP frameworks: Apache Axis 1.x [1] and Codehaus
XFire [7]. Then, we test the operability (requirements R1, R2, and
R3) of the PIM and use the implemented prototypes to evaluate
Fig. 5. An excerpt from the interceptor manager's interface in OMG IDL format.

image of Fig.�4
image of Fig.�5
image of Fig.�3


Fig. 6. The API design for the interceptor.

214 C.-C. Lin et al. / Computer Standards & Interfaces 36 (2013) 209–218
requirement R4. The implementations and the experimental results
show that the prototypes meet all four requirements of the PIM.
4.1. Prototype implementation

There are many SOAP frameworks, which have similar architec-
ture, such as Axis [1], XFire [7], JBoss [18], and so on. We build the
PIM prototypes on Apache Axis 1.x [1] and Codehaus XFire [7] since
they are widely used in academic research, for example, grid services
[5,35], sharing digital resources [33], and composite telecom services
[42]. Each framework provides a handler mechanism [1,7] that allows
application developers to combine their handlers as a handler chain.
Note that the handlers are similar to the interceptors in our context.
In both frameworks, when the SOAP engines redirect a message to
the handler chain, it passes through each handler; hence, each han-
dler has an opportunity to examine the message content, as stipulat-
ed in requirement R1. Because of the proprietary nature of handler
mechanisms, the handlers (or interceptors), developed for Apache
and XFire are not portable to the other frameworks, even though
the frameworks' handler mechanisms are very similar. Each handler
Fig. 7. An excerpt from the interceptor manager's interface in OMG IDL format.
mechanism provides “handler management” functions that enable
application developers to add, delete, or modify the handler chain
through the configuration files; however, the SOAP engine has to be
restarted each time a modification is made, which means require-
ment R3 is not satisfied completely. Finally, neither framework
provides a way to address the reliability issue, as called for in require-
ment R4; thus, a design fault or software failure in a handler could
cause the whole system to crash. Next, we describe the implementa-
tion of PIM on both frameworks to demonstrate its feasibility.

The PIM interface comprises the client-side interfaces and the
server-side interfaces. Here, we only consider the server-side implemen-
tation of PIM, since the client-side implementation is similar. In Apache
Axis, the functionalities of message exchange between the handlers
and the SOAP engine, as well as handler management are implemented
in one class, namely org.apache.axis.server.AxisServer.java. Therefore,
we modify the source file to embed the interceptor management mech-
anism (IM) for managing the lifecycle of interceptors. In contrast, XFire
separates bidirectional message exchanges and handler management
into different classes. Hence, we create two new handlers (two class
files), called org.codehaus.xfire.handler.RequestPIMHandler.java and
org.codehaus.xfire.handler.ResponsePIMHandler.java, as an IM. Next,
we modify two source files, org.codehaus.xfire.handler.Phase.java
and org.codehaus.xfire.DefaultXFire.java, to register and enable the
IM, which is then installed on the SOAP engine of XFire. Fig. 8 shows an
excerpt from the IIManager's interface in Java, and Fig. 9 shows a possible
implementation of IIManager. The interface is converted directly from
the IDL definition of IIManager. Lines 7 and 8 in Fig. 9, show how to
load and manage the given interceptor via the IIManagerImpl::plugIn()
function; and lines 11 and 14 configure the attributes of the interceptor.

PIM defines a set of abstract interfaces via which an interceptor
can be incorporated with the SOAP engine and process SOAP
Fig. 8. An excerpt from the IIManager's interface.

image of Fig.�6
image of Fig.�7
image of Fig.�8


Fig. 9. An excerpt from the IIManager's implementation code for Apache Axis.

Fig. 11. An excerpt from the ClientInterceptor interface definition in Java.

215C.-C. Lin et al. / Computer Standards & Interfaces 36 (2013) 209–218
messages. Next, we explain the implementation of a server-side inter-
ceptor; a client-side interceptor can be implemented in similarmanner.
Figs. 10, 11, and 12 show excerpts from the interfaces converted directly
from the related IDL in Fig. 7. After interceptor developers implement
the interfaces based on their specific requirements, they can use
IIManagerImpl to load and manage their interceptors. Here, we im-
plement a server-side interceptor as a later “plug-in” for the two
IMs implemented on the respective frameworks. The server-side inter-
ceptor utilizes the functions receiveRequest(…) and sendReply(…)
from the org.w3c.PortableInterceptor.ServerInterceptor interface
(shown in Fig. 12). The client-side interceptor implements the
functions sendRequest(…) and receiveReply(…) from the org.w3c.
PortableInterceptor.ClientInterceptor interface (shown in Fig. 11).

During the implementation period, we use exception handling to
improve the reliability (R4) of the SOAP engine when the PIM is
installed because, in general, the system will be more reliable if all
its exceptions have been handled completely. In our experience,
when an application system implements a PIM, malfunctions of the
IM and/or interceptors have the greatest impact on the reliability of
the system. To prevent such situations, we add programming codes
in the SOAP engine to catch and mask all exceptions that may occur
at the IM. In the same way, we can add programming codes to the
IM module to catch and mask all exceptions that may occur at the in-
terceptors. Since different SOAP engine providers may use different
architecture and/or implementation, developers have a major chal-
lenge while they implement a PIM compliant SOAP engine. Because
of developers have to hack each source code of the SOAP engines
and figure out their entry point of SOAP messages to apply the pro-
posed PIM. However, we think that SOAP framework providers
could easily apply the proposed PIM to their products.
Fig. 10. An excerpt from the interceptor interface definition in Java.
4.2. Experiments on requirements R4 of PIM

In this subsection, we evaluate the implemented prototypes based
on the requirements of PIM. Fig. 13 shows the test environment.
Hosts H0, H1, and H2 use a Pentium IV 3.2GHz PC with a 1 GB memory
and run on an MS Windows XP platform. An administration applica-
tion (admAP) and a client are implemented in MS C# and installed
on Host H0. Meanwhile, hosts H1 and H2 are installed, respectively,
in Axis and XFire, the modified open source SOAP engines. First, we
consider the operability of the prototypes (requirements R1, R2, and
R3), and then evaluate requirement R4.

Here, we test the operability (the run-time lifecycle management)
of the IMs and the portability of the implemented interceptor (PI),
which can be used in both Axis and XFire. To test the operability of
the IMs, the administration application first invokes the plugin()
and activate() functions to plug in and activate our test interceptor
(Steps 1 to 4). Next, the client invokes a Web service, such as the in-
voke() function, provided by both SOAP engines (Steps 5 to 6). The
test results show that both IMs can manage the implemented inter-
ceptor (PI) at run-time and that (PI) can be used by different SOAP
engines. We demonstrate that messages can be intercepted by devel-
oping a SOAP client (shown in Fig. 14), which sends a simple sales
order to the Web Services H1 and H2 and receives a result marked
“true”. The intercepted messages (shown in Figs. 15 and 16) can be
used to monitor and analyze the contexts in real-time. The SOAPmes-
sages dumped by the Axis and XFire engine consoles show that the
server-side interceptor can function on both SOAP engines.

Requirement R4 of PIM relates to the impact on the modified SOAP
engine if the installed IM and/or the plugged interceptors malfunc-
tion or crash. Recall that we discussed the reliability of PIM in
Subsection 4.1; here, we describe the experiment for evaluating its ef-
ficiency. The PIM's overhead is incurred primarily by the IM and the
interceptors. The IM increases the run-time overhead when it looks
up the interceptor chain (interceptors) and calls the interception
functions of the interceptor. The overhead of an interceptor depends
on its internal algorithms and activities. However, interceptors are
usually custom-made, so it is difficult to determine the performance
of each one. We therefore evaluate the overhead of a PIM that in-
cludes an IM and a dummy interceptor. Fig. 17 shows an excerpt
from the dummy interceptor's code. The interceptor can also be
used to dump SOAP messages when the interception function
receiveRequest() is called (Line 6). We construct an experiment envi-
ronment that is similar to the one in Fig. 13; however, we place H0,
H1, and H2 on the same PC to eliminate network latency. The client
separately invokes the echoString() belonging to the Web Services
deployed on the modified Axis and XFire SOAP engines. The purpose
of the experiment is to measure the response time delay incurred by
the working PIM. All the results reported in this section have a 95%
Fig. 12. An excerpt from the ServerInterceptor interface definition in Java.

image of Fig.�9
image of Fig.�10
image of Fig.�11
image of Fig.�12


Fig. 13. The test environment for evaluating the portability of the proposed PIM.

Fig. 14. An example of a SOAP client.

Fig. 15. A message intercepted at the inte

216 C.-C. Lin et al. / Computer Standards & Interfaces 36 (2013) 209–218
confidence interval with interval half-widths of less than 3% of the av-
erage measurements.

Analysis of the overhead shows that the size of the input/output
parameter (or the message size) in each nested invocation can affect
the invocation's round trip time (RTT). Therefore, we measure the PI's
net processing time for messages that vary in size from 4 bytes to
500 KB. The experiment results, shown in Table 1, demonstrate that
the client's RTT increases as the message size increases. The reduction
in the RTT with PIM on XFire for 500 KB of data may be due to the ex-
ternal operation of the system I/O. Since PIM's overhead is less than
that of the system I/O, we conclude that the PIM overheads on Axis
and XFire are negligible. Thus, based on the proof of concept previ-
ously discussed, we believe that PIM is feasible.
5. Related works

There are two commonly used interception mechanisms, namely
the SOAP intermediary mechanism [38] and the CORBA portable in-
terceptor (PI) [25]. In this section, we discuss the feasibility of using
the SOAP intermediary and the CORBA portable interceptor to satisfy
the four PIM requirements.
rception point of receiveRequest(…).

image of Fig.�13
image of Fig.�14
image of Fig.�15


Fig. 16. A message intercepted at the interception point of sendReply(…).

217C.-C. Lin et al. / Computer Standards & Interfaces 36 (2013) 209–218
5.1. The flexibility of using the SOAP intermediary mechanism to meet
PIM requirements

The W3C recommendation for SOAP 1.2 proposes an intermediary
mechanism [38], which operates as a proxy Web service that receives
SOAPmessages redirected from either the client site (invocation mes-
sages) or the server site (reply messages). The redirected information
is inserted into the header of a SOAP message before the latter is sent
out. An intermediary can examine the content of a SOAP message and
process it in the same way as an interceptor in the PIM. Note that an
intermediary operates as a third party Web service independent of
the client application and the server site's Web Service. In other
words, its role is different to that of the client site interceptor and
the server site interceptor (the endpoint interceptor), as requirement
R1, so the intermediary cannot implement some of the interceptor's
applications. For example, a popular QoS metric is used to measure
the round-trip delay of a SOAP invocation; however, it is difficult to
obtain a precise measurement using the intermediary approach be-
cause the intermediary site is located between the client site and
the server site. Besides, a fault tolerant system needs an endpoint inter-
ceptor to log and to recover states of the system; however, an interme-
diary is only operated as a midpoint proxy. Since an intermediary does
not quitemeet the functional requirement R1,we donot have to discuss
the requirements R2–R4.

5.2. The flexibility of using CORBA's portable interceptor to meet PIM
requirements

CORBA [23] provides a “Portable Interceptor” [25] recommenda-
tion function in its standard specification. The recommendation func-
tion defines a set of interfaces that enable an application-specific
interceptor to communicate with the CORBA ORB in order to inter-
cept the content of the latter's in/out invocations (R1). The informa-
tion in a CORBA invocation is equivalent to that of a SOAP message.
The recommendation function also allows software developers to
Fig. 17. An excerpt from the dummy service interceptor code.
install interceptors that are portable (R2) across all CORBA 3.0 com-
pliant middleware. In addition, software developers can use the inter-
faces to manage some aspects of their interceptors, but the interfaces
are not adaptable, as stipulated in R3. Because of CORBA ORB has to be
restarted for applying new configuration while the CORBA-based sys-
tem has been reconfigured. However, some CORBA vendors, such as
VisiBroker [4] and OpenORB [40], provide proprietary solutions that
partially meet requirement R3. Although the CORBA standard does
not specifically address the reliability issue in R4, we found that
state-of-the-art CORBA compliant products, such as Orbix [16] and
OpenORB [40], satisfy R4 because they use proprietary implementa-
tion techniques.
6. Conclusion

Simple Object Access Protocol (SOAP) frameworks are commonly
used platforms for developing Web Service, which constitute an in-
creasingly recognized technology for constructing distributed appli-
cations. An interceptor is generally applied to intercept and monitor
messages for specific purposes. We believe that Web Services would
have greater applicability in various application domains if SOAP
frameworks were to incorporate an interceptor mechanism. To test
this proposition, we first acquired the requirements of an interceptor
mechanism by examining how various application domains, includ-
ing continuous auditing (CA), computer forensics (CF), fault tolerance
(FT), load balancing (LB), and quality of service (QoS), employ the in-
terceptor approach. Second, to satisfy these requirements, we design
a set of standard interfaces, called “portable interceptor mechanism”

(PIM), for SOAP engines (which are core component of SOAP frame-
works). Finally, we evaluated the feasibility of applying the PIM by
using a proof of concept that implements two prototypes and exam-
ines them based on the determined requirements. The results show
that the proposed PIM is feasible.
Table 1
Experimental data for client RTT delay.

Data size 4 bytes 1 KB 2 KB 5 KB 50 KB 500 KB

(A) Axis
RTT with PIM (ms) 1.64 1.94 2.18 3.08 14.53 116.90
RTT w/o PIM (ms) 1.62 1.89 2.13 3.01 14.37 116.61
PIM overhead 0.02 0.04 0.05 0.07 0.15 0.29

(B) XFire
RTT with PIM (ms) 1.10 1.11 1.19 1.53 6.18 98.55
RTT w/o PIM (ms) 1.09 1.11 1.19 1.52 6.18 99.01
PIM overhead 0.01 0.00 0.00 0.01 0.00 −0.46

image of Fig.�16
image of Fig.�17


218 C.-C. Lin et al. / Computer Standards & Interfaces 36 (2013) 209–218
The proposed PIM provides three major features: endpoint inter-
ception, portability, and run-time lifecycle management. These
features are not fully supported by existing solutions. First, the pro-
posed PIM supports a set of standard interfaces for endpoint intercep-
tion, which differs from the SOAP intermediary that operates as a
midpoint proxy. An endpoint interception is required by some appli-
cation domains such as FT, QoS, and CF. Second, the interceptors can
become portable across systems running on SOAP frameworks
when both interceptors and frameworks are compliant with the pro-
posed PIM. This is in contrast to the proprietary implementation of
existing SOAP frameworks such as the Axis's “handler.” Third, the
proposed PIM provides an interface for managing the interceptors'
lifecycle at run-time, which is a crucial functionality for applications
such as CA and LB. This essential feature is not fully supported by
existing solutions.

References

[1] Apache, Apache Axis 1.x Documents, from http://ws.apache.org/axis/.
[2] P. Arpaia, M. Bernardi, G. Lucca, V. Inglese, G. Spiezia, An Aspect-Oriented

Programming-based approach to software development for fault detection in
measurement systems, Computer Standards & Interfaces 32 (2010) 141–152.

[3] N. Artaiam, T. Senivongse, Enhancing Service-Side QoS Monitoring for Web
Services, Ninth ACIS International Conference on Software Engineering, Artificial
Intelligence, Networking, and Parallel/Distributed Computing, 2008, pp. 765–770.

[4] Borland, VisiBroker 7.0 Manual, from http://info.borland.com/techpubs/visibroker/
2006.

[5] K. Benedyczak, A. Nowinski, K.S. Nowinski, P. Bala, UniGrids Streaming Framework:
Enabling Streaming for the New Generation of Grids, Lecture Notes in Computer
Science (Applied Parallel Computing, State of the Art in Scientific Computing 4699
(2008) 809–818.

[6] J. Cao, D. Spooner, S. Jarvis, G. Nudd, Grid load balancing using intelligent agents,
Future Generation Computer Systems 21 (1) (2005) 135–149.

[7] Codehaus, XFire user's guide (XFire 1.0 Document), from http://xfire.codehaus.
org/ 2006.

[8] K. Doughty, J. O'Driscoll, Information technology auditing and facilitated control
self-assurance, Information Systems Control Journal 4 (2002) 33–38.

[9] C.L. Fang, D. Liang, C. Chen, P. Lin, A Redundant Nested Invocation Suppression
Mechanism for Active Replication Fault Tolerant Web Service, Proc. of the IEEE
International Conference on e-Technology, e-Commerce and e-Service (EEE'04),
Taipei, March 2004, pp. 9–16.

[10] C.L. Fang, D. Liang, F. Lin, C.C. Lin, W. Chu, A Portable Interceptor Mechanism
on SOAP for Continuous Audit, Proc. of 13th Asia-Pacific Software Engineering
Conference (APSEC2006), Bangalore, India, December 2006, pp. 95–104.

[11] P. Felber, P. Narasimhan, Experiences, Strategies, and Challenges in Building
Fault-Tolerant CORBA Systems, IEEE Transactions on Computers 53 (5) (2004)
497–511.

[12] M. Gunestas, D. Wijesekera, A. Singhal, Forensic Web Services, IFIP International
Federation for Information Processing 285 (2008) 163–176.

[13] J. Hallstrom, W. Leal, A. Arora, Scalable evolution of highly available systems,
IEICE Transactions on Information and Systems 86 (10) (2003) 2154–2164.

[14] A. Helali, A. Soudani, S. Nasri, T. Divoux, An approach for end-to-end QoS and
network resources management, Computer Standards & Interfaces 28 (2005)
93–108.

[15] ISO/IEC, 9126, Software engineering — Product quality, from http://www.iso.org/
iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=22749.

[16] IONA, Technologies, Orbix 3.3, from http://www.iona.com/products/orbix/.
[17] N. Jailani, N. Yatim, Y. Yahya, A. Patel, M. Othman, Secure and auditable

agent-based e-marketplace framework for mobile users, Computer Standards &
Interfaces 30 (2008) 237–252.

[18] JBoss, JBoss by Red Hat, http://www.jboss.com/.
[19] A. Kogan, E. Sudit, M. Vasarhelyi, Continuous online auditing: a program of re-

search, Journal of Information Systems 13 (2) (Fall 1999) 87–103.
[20] D. Liang, C. Fang, C. Chen, F. Lin, Fault Tolerant Web Service, Proc. of 10th

Asia-Pacific Software Engineering Conference (APSEC2003), Chiang Mai, Thailand,
December 2003, pp. 310–321.

[21] P. Narasimhan, M. Moser, P. Melliar-Smith, Strongly consistent replication and
recovery of fault-tolerant CORBA applications, Computer System Science and
Engineering Journal 17 (2) (March 2002) 103–114.

[22] B. Natarajan, A. Gokhale, S. Yajnik, D. Schmidt, DOORS: Towards High-Performance
Fault Tolerant CORBA, The 2nd Distributed Applications and Objects (DOA) confer-
ence, 2002, pp. 39–48.

[23] Object Management Group (OMG), Common Object Request Broker Architecture:
Core Specification V 3.0.3, OMG Technical Committee Document formal/04-03-
01, 2004.

[24] Object Management Group (OMG), WSDL-SOAP to CORBA Interworking, OMG
Technical Committee Document mars/03-05-07, 2003.

[25] Object Management Group (OMG), CORBA Portable Interceptors V 3.0.3, OMG
Technical Committee Document formal/04-03-19, 2004.

[26] O. Othman, J. Balasubramanian, D. Schmidt, The Design of an Adaptive
Middleware Load Balancing and Monitoring Service, LNCS/LNAI: Proceedings of
the Third International Workshop on Self-Adaptive Software, Heidelberg, June
2003.

[27] A. Patel, Frameworks for secure, forensically safe and auditable applications,
Computer Standards & Interfaces 30 (2008) 213–215.

[28] Z. Rezaee, A. Sharbatoghlie, R. Elam, Continuous auditing: building automated
auditing capability, Auditing: A Journal of Practice & Theory 21 (1) (March
2002) 147–163.

[29] R. Rowlingson, A ten step process for forensic readiness, International Journal of
Digital Evidence 2 (3) (Winter 2004).

[30] J. Snell, T. Glover, Portability and interoperability, from http://www.ibm.com/
developerworks/webservices/library/ws-port/index.html?S_TACT=105AGX04&
S_CMP=EDU 2003.

[31] D. Song, dSniff 2.3 Document, from http://www.monkey.org/dugsong/dsniff/
2001.

[32] P. Sommer, Intrusion detection systems as evidence, Computer Networks 31
(23–24) (1999) 2477–2487.

[33] P. Toukach, H.J. Joshi, R. Ranzinger, Y. Knirel, C.-W. Lieth, Sharing of worldwide
distributed carbohydrate-related digital resources: online connection of the
Bacterial Carbohydrate Structure DataBase and GLYCOSCIENCES, de, Nucleic
Acids Research (Database issue) 35 (2008) 280–286.

[34] M. Vasarhelyi, F. Halper, The continuous audit of online systems, Auditing: A Journal
of Practice and Theory 10 (1) (1991) 110–125.

[35] V. Venturi, M. Riedel, S. Memon, F. Stagni, B. Schuller, D. Mallmann, B. Tweddell, A.
Gianoli, S. Berghe, D. Snelling, A. Streit, Using SAML-Based VOMS for Authorization
within Web Services-Based UNICORE Grids, Lecture Notes, Computer Science
(Euro-Par 2007 Workshops: Parallel Processing 4854 (2008) 112–120.

[36] W3C, Simple Object Access Protocol (SOAP) 1.1 recommendation, from http://
www.w3.org/TR/SOAP/ 2000.

[37] W3C, Web Services Description Language (WSDL) 1.1, from http://www.w3.org/
TR/wsdl 2001.

[38] W3C, Simple Object Access Protocol (SOAP) 1.2 recommendation, from http://
www.w3.org/TR/soap12-part1/ 2003.

[39] R. Whittington, K. Pany, Principles of Auditing and other Assurance Services,
McGraw-Hill, 2002.

[40] C. Wood, J. Daniels, M. Rumpf, OpenORB v.1.4 manual, from http://openorb.
sourceforge.net/docs/1.4.0/OpenORB/doc/orb.html 2004.

[41] J. Woodroof, D. Searcy, Continuous audit model development and implementation
within a debt covenant compliance domain, International Journal of Accounting
Information System 2 (2001) 169–191.

[42] Y. Yuan, J.J. Wen, W. Li, B.B. Zhang, A Comparison of Three Programming Models
for Telecom Service Composition, The Third Advanced International Conference
on Telecommunications (AICT'07), 2007, p. 1.

[43] L. Zeng, B. Benatallah, A.H.H. Ngu, M. Dumas, J. Kalagnanam, H. Chang, QoS-Aware
Middleware for Web Services Composition, IEEE Transactions on Software
Engineering 30 (5) (2004) 311–327.
Chien-Cheng Lin is currently attending the National
Taiwan Ocean University, Taiwan, pursuing a PhD in
computer science. He also earned his MS in computer
science there in 2003. His research interests include
fault-tolerance, information security, and digital foren-
sics.

Chen-Liang Fang is an associate professor at Depart-
ment of Information Management, Jinwen University
of Science and Technology, Taiwan. He received his
PhD degree from National Taiwan University of Science
and Technology, Taiwan. His research interests include
fault-tolerance, and information security.

Deron Liang received a BS degree in electrical engi-
neering from National Taiwan University in 1983,
and an MS and a PhD in computer science from the
University of Maryland at College Park in 1991 and
1992 respectively. He is on the faculty of Computer
Science & Information Engineering Department, and
serves as Director of Software Research Center, Na-
tional Central University, Taiwan since 2008. Dr.
Liang's current research interests are in the areas of
software fault-tolerance, system security, and system
reliability analysis. Dr. Liang is a member of ACM
and IEEE.

http://ws.apache.org/axis/
http://info.borland.com/techpubs/visibroker/
http://xfire.codehaus.org/
http://xfire.codehaus.org/
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=22749
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=22749
http://www.iona.com/products/orbix/
http://www.jboss.com/
http://www.ibm.com/developerworks/webservices/library/ws-port/index.html?S_TACT=105AGX04&S_CMP=EDU
http://www.ibm.com/developerworks/webservices/library/ws-port/index.html?S_TACT=105AGX04&S_CMP=EDU
http://www.ibm.com/developerworks/webservices/library/ws-port/index.html?S_TACT=105AGX04&S_CMP=EDU
http://www.monkey.org/dugsong/dsniff/
http://www.w3.org/TR/SOAP/
http://www.w3.org/TR/SOAP/
http://www.w3.org/TR/wsdl
http://www.w3.org/TR/wsdl
http://www.w3.org/TR/soap12-part1/
http://www.w3.org/TR/soap12-part1/
http://openorb.sourceforge.net/docs/1.4.0/OpenORB/doc/orb.html
http://openorb.sourceforge.net/docs/1.4.0/OpenORB/doc/orb.html

	A portable interceptor mechanism for SOAP frameworks
	1. Introduction
	2. Determining PIM requirements
	2.1. Functionality and portability
	2.2. Usability
	2.3. Reliability and efficiency
	2.4. Maintainability
	2.5. Summary of PIM requirements

	3. Interface design for the portable interceptor mechanism
	3.1. Use case analysis
	3.1.1. Managing an interceptor's lifecycle
	3.1.2. Run-time phase of an interceptor
	3.1.3. Summary of the use case analysis

	3.2. Design of PIM interfaces
	3.2.1. Design of the interceptor management mechanism API
	3.2.2. Design of the interceptor API


	4. Implementing the concept
	4.1. Prototype implementation
	4.2. Experiments on requirements R4 of PIM

	5. Related works
	5.1. The flexibility of using the SOAP intermediary mechanism to meet PIM requirements
	5.2. The flexibility of using CORBA's portable interceptor to meet PIM requirements

	6. Conclusion
	References


